|
|
A111129
|
|
Decimal expansion of the continued fraction 1+1/(1+2/(1+3/(1+4/(1+5/(1+...))))).
|
|
9
|
|
|
1, 5, 2, 5, 1, 3, 5, 2, 7, 6, 1, 6, 0, 9, 8, 1, 2, 0, 9, 0, 8, 9, 0, 9, 0, 5, 3, 6, 3, 9, 0, 5, 7, 8, 7, 1, 3, 3, 0, 7, 1, 1, 6, 3, 6, 4, 9, 2, 0, 6, 0, 3, 3, 3, 5, 5, 4, 6, 3, 1, 3, 9, 4, 2, 4, 2, 7, 2, 2, 6, 9, 2, 5, 5, 0, 7, 9, 5, 0, 3, 1, 6, 8, 7, 0, 2, 2, 8, 0, 1, 1, 8, 2, 6, 7, 2, 1, 1, 6, 5, 5, 2, 1, 4, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
REFERENCES
|
B. C. Berndt, Y.-S. Choi and S.-Y. Kang, The problems submitted by Ramanujan to the Journal of the Indian Mathematical Society, Continued Fractions: From Analytic Number Theory to Constructive Approximation, ed. B. C. Berndt and F. Gesztesy, Amer. Math. Soc., 1999, pp. 15-56.
S. R. Finch, "Mathematical Constants", Cambridge, pp. 423-428.
H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, 1948, pp. 356-358, 367
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 1..5000
Eric Weisstein's World of Mathematics, Continued Fraction Constants
Eric Weisstein's World of Mathematics, Generalized Continued Fraction
|
|
FORMULA
|
Equals the reciprocal of sqrt(pi*e/2)*erfc(1/sqrt(2)), where erfc is the complementary error function.
|
|
EXAMPLE
|
1.52513527616098120908909053639057871330711636492060333554631394242...
|
|
MATHEMATICA
|
RealDigits[1/(Sqrt[Pi*E/2]*Erfc[1/Sqrt[2]]), 10, 111][[1]]
|
|
PROG
|
(PARI) 1/(sqrt(Pi*exp(1)/2)*erfc(1/sqrt(2))) \\ G. C. Greubel, Jan 24 2017
|
|
CROSSREFS
|
Cf. A099287, A108088, A111188.
Cf. A225435, A225436 (numerators and denominators of convergents to c.f.).
Sequence in context: A166199 A324860 A008566 * A168464 A059688 A072996
Adjacent sequences: A111126 A111127 A111128 * A111130 A111131 A111132
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
N. J. A. Sloane, based on correspondence from Tom Raes (tommy1729(AT)hotmail.com) and Steven Finch, Sep 22 2005
|
|
EXTENSIONS
|
More terms from Robert G. Wilson v and Hans Havermann, Oct 17 2005
Definition corrected by Steven Finch, Feb 05 2009
|
|
STATUS
|
approved
|
|
|
|