login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A324860 Decimal expansion of 0.5250984..., a real fixed point of the iteration s = zetahurwitz(s, A324859). 2
5, 2, 5, 0, 9, 8, 4, 2, 4, 6, 2, 8, 8, 9, 2, 5, 7, 2, 1, 1, 5, 4, 3, 8, 9, 1, 2, 3, 9, 5, 8, 5, 1, 3, 1, 6, 4, 2, 9, 6, 3, 1, 1, 0, 7, 5, 4, 8, 7, 9, 6, 3, 2, 0, 1, 8, 8, 7, 0, 2, 4, 4, 4, 9, 1, 7, 8, 5, 4, 5, 6, 9, 1, 4, 0, 6, 5, 5, 2, 5, 1, 2, 7, 7, 0, 0, 7, 6, 0, 9, 1, 1, 9, 5, 2, 7, 2, 0, 9, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For real values of the parameter "a" between 0 and 1, a real fixed point "s" of the iterated Hurwitz zeta function [s = zetahurwitz(s, a)] lies on a curve that passes through A069857 (-0.295905...) and has a maximum tending toward 1.  This curve has inflection points for a = 0.1990753... (A324859) or 0.91964... .  The fixed point "s" on this curve for the iteration "s = zetahurwitz(s, A324859)" is 0.5250984... .

LINKS

Table of n, a(n) for n=0..99.

EXAMPLE

0.525098424628892572115438912395851316429631107548...

PROG

(PARI) { A324859 = solve(t = 1/16, 1/2, derivnum(x = t, solve(v = -1, 1 - x, v - zetahurwitz(v, x)), 2); ); solve(v = -1, 1 - A324859, v - zetahurwitz(v, A324859)) }

CROSSREFS

Cf. A324859, A069857, A069995.

Sequence in context: A088507 A050001 A166199 * A008566 A111129 A168464

Adjacent sequences:  A324857 A324858 A324859 * A324861 A324862 A324863

KEYWORD

nonn,cons

AUTHOR

Reikku Kulon, Mar 18 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 7 09:16 EDT 2020. Contains 336274 sequences. (Running on oeis4.)