login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A111088 a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 2. 10
1, 1, 2, 8, 52, 464, 5184, 68928, 1057584, 18345536, 354570112, 7551674624, 175700025728, 4433961734656, 120642462777344, 3520972469815296, 109731998026937088, 3637456413350962176, 127800512612435896320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

For x = 1, this is : 1, 1, 1, 2, 7, 34, 206, 1476, 12123, ..., see A075834.

For x = 0, this is : 1, 1, 0, 0, 0, 0, 0, 0, 0, ...

For x = -1, this is : 1, 1, -1, 2, -5, 14, -42, 132, -429, ...,((-1)^(n+1)* A000108(n)).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

J. Alman, C. Lian, B. Tran, Circular Planar Electrical Networks: Posets and Positivity, 2013.

FORMULA

O.g.f. A(x) satisfies:

(1) A(x) = x / Series_Reversion(x*G(x)) where G(x) = A(x*G(x)) and A(x) = G(x/A(x)) such that G(x) is the g.f. of the double factorials (A001147). - Paul D. Hanna, Jul 09 2006

(2) A(x) = Sum_{n>=0} A001147(n) * x^n / A(x)^n, where A001147(n) = (2*n)!/(n!*2^n). - Paul D. Hanna, Aug 02 2014

(3) A(x) = 1 + x * (A(x) + x*A'(x)) / (A(x) - x*A'(x)). - Paul D. Hanna, Aug 02 2014

(4) [x^(n+1)] A(x)^n = 2*n*([x^n] A(x)^n) for n>=0. - Paul D. Hanna, Aug 02 2014

a(n) ~ 2^(n+1/2) * n^n / exp(n+1/2). - Vaclav Kotesovec, Aug 02 2014

EXAMPLE

From Paul D. Hanna, Aug 02 2014: (Start)

O.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 52*x^4 + 464*x^5 + 5184*x^6 +...

where A(x) = x/Series_Reversion(x + x^2 + 3*x^3 + 15*x^4 + 105*x^5 + 945*x^6 +...)

and thus

A(x) = 1 + x/A(x) + 3*x^2/A(x)^2 + 15*x^3/A(x)^3 + 105*x^4/A(x)^4 + 945*x^5/A(x)^5 +...

Illustration of the initial terms:

a(2) = 2;

a(3) = 2*2^2 = 8;

a(4) = 2*3*8 + 1*2*2 = 52;

a(5) = 2*4*52 + 1*2*8 + 2*8*2 = 464;

a(6) = 2*5*464 + 1*2*52 + 2*8*8 + 3*52*2 = 5184; ...

To illustrate formula: [x^(n+1)] A(x)^n = 2*n*([x^n] A(x)^n), form a table of coefficients of x^k in A(x)^n:

n=1: [1, 1,  2,   8,   52,   464,  5184,   68928,  1057584, ...];

n=2: [1, 2,  5,  20,  124,  1064, 11568,  150912,  2283888, ...];

n=3: [1, 3,  9,  37,  222,  1836, 19412,  248256,  3703536, ...];

n=4: [1, 4, 14,  60,  353,  2824, 29032,  363696,  5345040, ...];

n=5: [1, 5, 20,  90,  525,  4081, 40810,  500480,  7241460, ...];

n=6: [1, 6, 27, 128,  747,  5670, 55205,  662460,  9431172, ...];

n=7: [1, 7, 35, 175, 1029,  7665, 72765,  854197, 11958758, ...];

n=8: [1, 8, 44, 232, 1382, 10152, 94140, 1081080, 14876033, ...]; ...

then we can see that the diagonals are related in the following way:

[2, 20, 222, 2824, 40810, 662460, 11958758, ...]

= [2*1, 4*5, 6*37, 8*353, 10*4081, 12*55205, 14*854197, ...].

Also, the diagonal

[1, 5, 37, 353, 4081, 55205, 854197, 14876033, ...]

is the logarithmic derivative of the g.f. of the double factorials.

Further, the main diagonal in the above table equals:

[1, 2*1, 3*3, 4*15, 5*105, 6*945, 7*10395, 8*135135, ...].

(End)

MATHEMATICA

x = 2; a[0] = a[1] = 1; a[2] = x; a[3] = 2x^2; a[n_] := a[n] = x*(n - 1)*a[n - 1] + Sum[(j - 1)*a[j]*a[n - j], {j, 2, n - 2}]; Table[ a[n], {n, 0, 18}] (* Robert G. Wilson v *)

PROG

(PARI) a(n)=Vec(x/serreverse(x*Ser(vector(n+1, k, (2*(k-1))!/(k-1)!/2^(k-1)))))[n+1] /* Paul D. Hanna, Jul 09 2006 */

(PARI) /* From o.g.f. A = 1 + x*(A + x*A')/(A - x*A'): */

{a(n)=local(A=1+x); for(i=1, n, A=1 + x*(A+x*A')/(A-x*A' +x*O(x^n))); polcoeff(A, n)}

for(n=0, 20, print1(a(n), ", ")) /* Paul D. Hanna, Aug 02 2014 */

CROSSREFS

Cf. A001147, A232967.

Sequence in context: A136794 A125787 A007832 * A006351 A089467 A195192

Adjacent sequences:  A111085 A111086 A111087 * A111089 A111090 A111091

KEYWORD

nonn

AUTHOR

Philippe Deléham, Oct 10 2005

EXTENSIONS

More terms from Robert G. Wilson v, Oct 12 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 05:27 EST 2014. Contains 252177 sequences.