This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A110593 a(1) = 3, a(n+1) = 2*(3^n). 5
 3, 6, 18, 54, 162, 486, 1458, 4374, 13122, 39366, 118098, 354294, 1062882, 3188646, 9565938, 28697814, 86093442, 258280326, 774840978, 2324522934, 6973568802, 20920706406, 62762119218, 188286357654, 564859072962, 1694577218886 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Since A081604 = "string-length of ternary representation of n", we have A081604 = A110593 # n. This is in terms of the repetition convolution operator #, where (sequence A) # (sequence B) = the sequence consisting of A(n) copies of B(n). Over the set of positive infinite integer sequences, # gives a nonassociative noncommutative groupoid (magma) with a left identity (A000012) but no right identity, where the left identity is also a right nullifier and idempotent. For any positive integer constant c, the sequence c*A000012 = (c,c,c,c,...) is also a right nullifier; for c = 1, this is A000012; for c = 3 this is A010701. LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 FORMULA a(1) = 3, a(2) = 6, for n>2: a(n+1) = 3*a(n). For n>1, cumulative sum of a(n) = A000244 = powers of 3. a(n) = the number of occurrences of the integer n in A081604 = "string-length of ternary representation of n." a(n) = A008776(n-1) for n>1. - R. J. Mathar, Apr 24 2007 G.f.: 3*x + 6*x^2/(1-3*x). - R. J. Mathar, Nov 18 2007 MATHEMATICA Rest[CoefficientList[Series[3 x + 6 x^2/(1 - 3 x), {x, 0, 50}], x]] (* G. C. Greubel, Sep 01 2017 *) PROG (PARI) x='x+O('x^50); Vec(3*x + 6*x^2/(1-3*x)) \\ G. C. Greubel, Sep 01 2017 CROSSREFS Cf. A000244, A081604. Sequence in context: A148565 A112572 A089325 * A049368 A152733 A215455 Adjacent sequences:  A110590 A110591 A110592 * A110594 A110595 A110596 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, Jul 29 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.