login
Triangle read by rows: T(n,1)=1, T(n,k) = T(n-1,k) + (n-1)T(n-1, k-1) for 1 <= k <= n.
2

%I #15 Aug 17 2017 22:32:27

%S 1,1,2,1,4,6,1,7,18,24,1,11,46,96,120,1,16,101,326,600,720,1,22,197,

%T 932,2556,4320,5040,1,29,351,2311,9080,22212,35280,40320,1,37,583,

%U 5119,27568,94852,212976,322560,362880,1,46,916,10366,73639,342964,1066644

%N Triangle read by rows: T(n,1)=1, T(n,k) = T(n-1,k) + (n-1)T(n-1, k-1) for 1 <= k <= n.

%C T(n,n) = n!. Sum of row n is the signless Stirling number of the first kind s(n,2)(A000254). T(n,k) = A096747(n,k) for 1 <= k <= n.

%F T(n, k) = Sum_{i=0..k-1} |stirling1(n, n-i)| for 1 <= k <= n.

%F From _Peter Bala_, Jul 08 2012: (Start)

%F E.g.f.: x/(1-x)*{1/(1-x*z)^(1/x) - 1/(1-x*z)} = x*z + (x + 2*x^2)*z^2/2! + (x + 4*x^2 + 6*x^3)*z^3/3! + ... Cf. the e.g.f. of A059518.

%F (End)

%e T(5,3) = 46 because 18 + 4*7 = 46.

%e Triangle begins:

%e Row 1: 1

%e Row 2: 1 2

%e Row 3: 1 4 6

%e Row 4: 1 7 18 24

%e Row 5: 1 11 46 96 120

%e Row 6: 1 16 101 326 600 720

%e Row 7: 1 22 197 932 2556 4320 5040

%p with(combinat): T:=(n,k)->add(abs(stirling1(n,n-i)),i=0..k-1): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form T:=proc(n,k) if k=1 then 1 elif k=n then n! else T(n-1,k)+(n-1)*T(n-1,k-1) fi end: for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form. - _Emeric Deutsch_, Jul 03 2005

%p A109822_row := proc(n) local k,i;

%p add(add(abs(combinat[stirling1](n, n-i)), i=0..k)*x^(n-k-1),k=0..n-1);

%p seq(coeff(%,x,n-k),k=1..n) end:

%p seq(print(A109822_row(n)),n=1..7); # _Peter Luschny_, Sep 18 2011

%t Table[Sum[Abs@ StirlingS1[n, n - i], {i, 0, k - 1}], {n, 10}, {k, n}] // Flatten (* _Michael De Vlieger_, Aug 17 2017 *)

%Y Cf. A000254, A049444, A059518, A096747, A137650.

%K nonn,tabl

%O 1,3

%A _Emeric Deutsch_, Jul 03 2005