login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A109822 Triangle read by rows: T(n,1)=1, T(n,k) = T(n-1,k) + (n-1)T(n-1, k-1) for 1 <= k <= n. 2
1, 1, 2, 1, 4, 6, 1, 7, 18, 24, 1, 11, 46, 96, 120, 1, 16, 101, 326, 600, 720, 1, 22, 197, 932, 2556, 4320, 5040, 1, 29, 351, 2311, 9080, 22212, 35280, 40320, 1, 37, 583, 5119, 27568, 94852, 212976, 322560, 362880, 1, 46, 916, 10366, 73639, 342964, 1066644 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

T(n,n) = n!. Sum of row n is the signless Stirling number of the first kind s(n,2)(A000254). T(n,k) = A096747(n,k) for 1 <= k <= n.

LINKS

Table of n, a(n) for n=1..52.

FORMULA

T(n, k) = Sum_{i=0..k-1} |stirling1(n, n-i)| for 1 <= k <= n.

From Peter Bala, Jul 08 2012: (Start)

E.g.f.: x/(1-x)*{1/(1-x*z)^(1/x) - 1/(1-x*z)} = x*z + (x + 2*x^2)*z^2/2! + (x + 4*x^2 + 6*x^3)*z^3/3! + ... Cf. the e.g.f. of A059518.

(End)

EXAMPLE

T(5,3) = 46 because 18 + 4*7 = 46.

Triangle begins:

Row 1:                    1

Row 2:                 1     2

Row 3:              1     4     6

Row 4:           1     7    18    24

Row 5:        1    11    46    96   120

Row 6:     1    16   101   326   600   720

Row 7:  1    22   197   932  2556  4320  5040

MAPLE

with(combinat): T:=(n, k)->add(abs(stirling1(n, n-i)), i=0..k-1): for n from 1 to 11 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form T:=proc(n, k) if k=1 then 1 elif k=n then n! else T(n-1, k)+(n-1)*T(n-1, k-1) fi end: for n from 1 to 11 do seq(T(n, k), k=1..n) od; # yields sequence in triangular form. - Emeric Deutsch, Jul 03 2005

A109822_row := proc(n) local k, i;

add(add(abs(combinat[stirling1](n, n-i)), i=0..k)*x^(n-k-1), k=0..n-1);

seq(coeff(%, x, n-k), k=1..n) end:

seq(print(A109822_row(n)), n=1..7); # Peter Luschny, Sep 18 2011

MATHEMATICA

Table[Sum[Abs@ StirlingS1[n, n - i], {i, 0, k - 1}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Aug 17 2017 *)

CROSSREFS

Cf. A000254, A049444, A059518, A096747, A137650.

Sequence in context: A219142 A220226 A181854 * A274292 A114192 A114656

Adjacent sequences:  A109819 A109820 A109821 * A109823 A109824 A109825

KEYWORD

nonn,tabl

AUTHOR

Emeric Deutsch, Jul 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 20 00:42 EST 2017. Contains 294957 sequences.