|
|
A109669
|
|
Numbers n such that the sum of the digits of sigma(n)^phi(n) is divisible by n.
|
|
0
|
|
|
1, 19, 126, 162, 231, 255, 717, 1611, 1897, 3231, 3735, 8692, 8774, 10676, 16903, 17299, 22194, 30845, 92049, 309546, 459780, 502302, 763755, 788379
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
No more terms < 58000. - Emeric Deutsch, Jul 25 2006
|
|
LINKS
|
Table of n, a(n) for n=1..24.
|
|
EXAMPLE
|
The digits of sigma(3735)^phi(3735) sum to 33615 and 33615 is divisible by 3735, so 3735 is in the sequence.
|
|
MAPLE
|
with(numtheory): sd:=proc(n) local nn: nn:=convert(n, base, 10): add(nn[j], j=1..nops(nn)) end: a:=proc(n) if sd(sigma(n)^phi(n)) mod n = 0 then n else fi end: seq(a(n), n=1..2000); # Emeric Deutsch, Jul 25 2006
|
|
MATHEMATICA
|
Do[s = DivisorSigma[1, n]^EulerPhi[n]; k = Plus @@ IntegerDigits[s]; If[Mod[k, n] == 0, Print[n]], {n, 1, 10^4}]
Select[Range[100000], Divisible[Total[IntegerDigits[DivisorSigma[1, #]^ EulerPhi[ #]]], #]&] (* Harvey P. Dale, Jan 03 2012 *)
|
|
CROSSREFS
|
Sequence in context: A126487 A241965 A182193 * A164905 A142106 A078851
Adjacent sequences: A109666 A109667 A109668 * A109670 A109671 A109672
|
|
KEYWORD
|
base,more,nonn
|
|
AUTHOR
|
Ryan Propper, Aug 06 2005
|
|
EXTENSIONS
|
More terms from Emeric Deutsch, Jul 25 2006
One more term (a(19)) from Harvey P. Dale, Jan 03 2012
a(20)-a(24) from Lars Blomberg, Dec 02 2016
|
|
STATUS
|
approved
|
|
|
|