The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A182193 Sequence of row differences related to table A182355. 2
 -1, 1, 19, 125, 743, 4345, 25339, 147701, 860879, 5017585, 29244643, 170450285, 993457079, 5790292201, 33748296139, 196699484645, 1146448611743, 6681992185825, 38945504503219, 226991034833501, 1323000704497799, 7711013192153305, 44943078448422043 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Sequence of row differences in table A182355. If A182355(k + 1, 0) - A182355(k, 0) = -1, a(n) = A182355(k + 1, n) - A182355(k, n). If p is a prime of the form 8r = +/- 3, a(p) = 5 mod p; if p is a prime of the form 8r = +/- 1, a(p) = 1 mod p. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..200 Index entries for linear recurrences with constant coefficients, signature (7,-7,1). FORMULA a(n) = 6*a(n-1) - a(n-2) + 12. a(0)=-1, a(1)=1, a(2)=19, a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3). - Harvey P. Dale, Feb 09 2014 From Colin Barker, Mar 05 2016: (Start) a(n) = -3 + (1/4)*( (4-sqrt(2))*(3+2*sqrt(2))^n + (4+sqrt(2))*(3-2*sqrt(2))^n ). G.f.: -(1-8*x-5*x^2) / ((1-x)*(1-6*x+x^2)). (End) a(n) = A002203(2*n) - A000129(2*n) - 3. - G. C. Greubel, May 24 2021 MAPLE Pell:= proc(n) option remember;     if n<2 then n   else 2*Pell(n-1) + Pell(n-2)     fi; end: seq(Pell(2*n) + 2*Pell(2*n-1) - 3, n=0..40); # G. C. Greubel, May 24 2021 MATHEMATICA LinearRecurrence[{7, -7, 1}, {-1, 1, 19}, 30] (* Harvey P. Dale, Feb 09 2014 *) PROG (MAGMA) I:=[-1, 1]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2)+12: n in [1..30]]; // Vincenzo Librandi, Feb 10 2014 (PARI) Vec(-(1-8*x-5*x^2)/((1-x)*(1-6*x+x^2)) + O(x^30)) \\ Colin Barker, Mar 05 2016 (Sage) [lucas_number2(2*n, 2, -1) - lucas_number1(2*n, 2, -1) - 3 for n in (0..40)] # G. C. Greubel, May 24 2021 CROSSREFS Cf. A000129, A002203, A182188, A182189, A182191, A182355. Sequence in context: A125329 A126487 A241965 * A109669 A164905 A142106 Adjacent sequences:  A182190 A182191 A182192 * A182194 A182195 A182196 KEYWORD sign,easy AUTHOR Kenneth J Ramsey, Apr 17 2012 EXTENSIONS More terms from Harvey P. Dale, Feb 09 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 13:00 EDT 2022. Contains 354071 sequences. (Running on oeis4.)