

A109610


Expansion of (1+3*x^42*x^7+x^10x^12)/((x+1)*(x^2+1)*(x^2+x+1)*(x^2x+1)*(x^4x^2+1)*(x1)^2).


0



1, 1, 1, 1, 4, 4, 4, 2, 2, 2, 3, 3, 3, 3, 3, 3, 6, 6, 6, 4, 4, 4, 5, 5, 5, 5, 5, 5, 8, 8, 8, 6, 6, 6, 7, 7, 7, 7, 7, 7, 10, 10, 10, 8, 8, 8, 9, 9, 9, 9, 9, 9, 12, 12, 12, 10, 10, 10, 11, 11, 11, 11, 11, 11, 14, 14, 14, 12, 12, 12, 13, 13, 13, 13, 13, 13, 16, 16, 16, 14, 14, 14, 15, 15, 15, 15
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,5


LINKS

Table of n, a(n) for n=0..85.
Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1).


FORMULA

a(0)=1, a(1)=1, a(2)=1, a(3)=1, a(4)=4, a(5)=4, a(6)=4, a(7)=2, a(8)=2, a(9)=2, a(10)=3, a(11)=3, a(12)=3, a(n)=a(n1)+a(n12)a(n13).  Harvey P. Dale, Aug 19 2015


MAPLE

seriestolist(series((1+3*x^42*x^7+x^10x^12)/((x+1)*(x^2+1)*(x^2+x+1)*(x^2x+1)*(x^4x^2+1)*(x1)^2), x=0, 150)); or Floretion Algebra Multiplication Program, FAMP Code: 4baseisumseq[ .25'i + .25i' + .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' + .25e]. Sumtype is set to: sum[Y[15]] = sum[ * ]


MATHEMATICA

CoefficientList[Series[(1+3x^42x^7+x^10x^12)/((x+1)(x^2+1)(x^2+x+1)(x^2x+1)(x^4x^2+1)(x1)^2), {x, 0, 100}], x] (* or *) LinearRecurrence[ {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1}, {1, 1, 1, 1, 4, 4, 4, 2, 2, 2, 3, 3, 3}, 100] (* Harvey P. Dale, Aug 19 2015 *)


CROSSREFS

Sequence in context: A201941 A180060 A220668 * A067395 A213274 A182565
Adjacent sequences: A109607 A109608 A109609 * A109611 A109612 A109613


KEYWORD

nonn


AUTHOR

Creighton Dement, Jul 31 2005


STATUS

approved



