This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109609 Expansion of 1/((x-1)*(x+1)*(x^2+x+1)*(x^2+x-1)*(x^2-x+1)*(x^2+1)*(x^4-x^2+1)). 0
 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 234, 378, 612, 990, 1602, 2592, 4194, 6786, 10980, 17766, 28746, 46512, 75259, 121771, 197030, 318801, 515831, 834632, 1350463, 2185095, 3535558, 5720653, 9256211, 14976864, 24233076, 39209940 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS FAMP Code for s batch of sequences satisfying the recurrence relation as (a(n)): A*B with A = - .25'i - .25i' - .25'ii' + .25'jj' + .25'kk' + .25'jk' + .25'kj' - .25e, B = + 'i + i' + 'ji' + 'ki' + e. Sumtype is set to: sum[Y[15]] LINKS Index entries for linear recurrences with constant coefficients, signature (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1). FORMULA a(0)=1, a(1)=1, a(2)=2, a(3)=3, a(4)=5, a(5)=8, a(6)=13, a(7)=21, a(8)=34, a(9)=55, a(10)=89, a(11)=144, a(12)=234, a(13)=378, a(n)=a(n-1)+ a(n-2)+ a(n-12)-a(n-13)-a(n-14). - Harvey P. Dale, Sep 20 2013 MAPLE seriestolist(series(1/((x-1)*(x+1)*(x^2+x+1)*(x^2+x-1)*(x^2-x+1)*(x^2+1)*(x^4-x^2+1)), x=0, 40)); MATHEMATICA CoefficientList[Series[1/((x-1)(x+1)(x^2+x+1)(x^2+x-1)(x^2-x+1)(x^2+1)(x^4-x^2+1)), {x, 0, 40}], x] (* or *) LinearRecurrence[ {1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1}, {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 234, 378}, 40] (* Harvey P. Dale, Sep 20 2013 *) CROSSREFS Cf. A000045. Sequence in context: A177247 A069041 A177372 * A274162 A073958 A074317 Adjacent sequences:  A109606 A109607 A109608 * A109610 A109611 A109612 KEYWORD nonn AUTHOR Creighton Dement, Jul 31 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.