login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A109249
Expansion of x*(-1+2*x-x^2+7*x^3+8*x^4-7*x^5+8*x^6) / ((4*x^3-x^2+3*x-1)*(2*x^4-2*x^3+3*x^2+1)*(x-1)^2).
1
0, 1, 3, 5, 11, 25, 63, 203, 627, 1855, 5745, 17975, 55377, 170873, 529837, 1640141, 5071723, 15696101, 48582587, 150328439, 465178711, 1439575547, 4454855557, 13785596531, 42660346149, 132015104853, 408526817793, 1264206449353
OFFSET
0,3
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 1kbasecycsumseq[ + .5'i + .5i' + j' + k' + 'ii'], sumtype: (Y[15], *, vesy)
LINKS
FORMULA
a(n) = 5*a(n-1) - 11*a(n-2) + 26*a(n-3) - 45*a(n-4) + 57*a(n-5) - 61*a(n-6) + 48*a(n-7) - 26*a(n-8) + 8*a(n-9) for n>8. - Colin Barker, May 13 2019
MATHEMATICA
LinearRecurrence[{5, -11, 26, -45, 57, -61, 48, -26, 8}, {0, 1, 3, 5, 11, 25, 63, 203, 627}, 40] (* Harvey P. Dale, May 26 2019 *)
PROG
(PARI) concat(0, Vec(x*(1 - 2*x + x^2 - 7*x^3 - 8*x^4 + 7*x^5 - 8*x^6) / ((1 - x)^2*(1 - 3*x + x^2 - 4*x^3)*(1 + 3*x^2 - 2*x^3 + 2*x^4)) + O(x^30))) \\ Colin Barker, May 13 2019
CROSSREFS
Sequence in context: A104545 A027050 A240148 * A196423 A320177 A289468
KEYWORD
nonn
AUTHOR
Creighton Dement, Aug 19 2005
STATUS
approved