login
A109249
Expansion of x*(-1+2*x-x^2+7*x^3+8*x^4-7*x^5+8*x^6) / ((4*x^3-x^2+3*x-1)*(2*x^4-2*x^3+3*x^2+1)*(x-1)^2).
1
0, 1, 3, 5, 11, 25, 63, 203, 627, 1855, 5745, 17975, 55377, 170873, 529837, 1640141, 5071723, 15696101, 48582587, 150328439, 465178711, 1439575547, 4454855557, 13785596531, 42660346149, 132015104853, 408526817793, 1264206449353
OFFSET
0,3
COMMENTS
Floretion Algebra Multiplication Program, FAMP Code: 1kbasecycsumseq[ + .5'i + .5i' + j' + k' + 'ii'], sumtype: (Y[15], *, vesy)
LINKS
FORMULA
a(n) = 5*a(n-1) - 11*a(n-2) + 26*a(n-3) - 45*a(n-4) + 57*a(n-5) - 61*a(n-6) + 48*a(n-7) - 26*a(n-8) + 8*a(n-9) for n>8. - Colin Barker, May 13 2019
MATHEMATICA
LinearRecurrence[{5, -11, 26, -45, 57, -61, 48, -26, 8}, {0, 1, 3, 5, 11, 25, 63, 203, 627}, 40] (* Harvey P. Dale, May 26 2019 *)
PROG
(PARI) concat(0, Vec(x*(1 - 2*x + x^2 - 7*x^3 - 8*x^4 + 7*x^5 - 8*x^6) / ((1 - x)^2*(1 - 3*x + x^2 - 4*x^3)*(1 + 3*x^2 - 2*x^3 + 2*x^4)) + O(x^30))) \\ Colin Barker, May 13 2019
CROSSREFS
Sequence in context: A104545 A027050 A240148 * A196423 A320177 A289468
KEYWORD
nonn
AUTHOR
Creighton Dement, Aug 19 2005
STATUS
approved