login
A240148
Number of nX2 0..3 arrays with no element equal to one plus the sum of elements to its left or one plus the sum of elements above it or one plus the sum of the elements diagonally to its northwest or zero plus the sum of the elements antidiagonally to its northeast, modulo 4
1
3, 5, 11, 25, 62, 144, 329, 775, 1781, 4150, 9625, 22243, 51656, 119768, 277454, 643440, 1492066, 3458520, 8019402, 18594916, 43110992, 99960080, 231775985, 537393625, 1246028348, 2889126804, 6698837457, 15532273640, 36014074118
OFFSET
1,1
COMMENTS
Column 2 of A240153
LINKS
FORMULA
Empirical: a(n) = 3*a(n-2) +14*a(n-3) +5*a(n-4) -28*a(n-5) -89*a(n-6) -50*a(n-7) +93*a(n-8) +303*a(n-9) +214*a(n-10) -113*a(n-11) -561*a(n-12) -468*a(n-13) -47*a(n-14) +584*a(n-15) +499*a(n-16) +142*a(n-17) -359*a(n-18) -96*a(n-19) -23*a(n-20) +128*a(n-21) -102*a(n-22) -99*a(n-23) -119*a(n-24) +32*a(n-25) +82*a(n-26) +113*a(n-27) +50*a(n-28) -7*a(n-29) -42*a(n-30) -20*a(n-31) +a(n-32) +4*a(n-33) +a(n-34) for n>36
EXAMPLE
Some solutions for n=4
..3..3....3..3....3..2....3..2....2..2....3..3....3..3....3..3....2..2....2..2
..2..2....2..1....3..2....3..1....0..2....2..1....2..1....2..1....0..2....0..2
..3..1....0..2....0..3....2..2....0..3....3..2....3..2....3..2....0..3....0..2
..2..1....3..2....0..3....3..1....2..2....0..2....3..2....3..1....0..3....0..2
CROSSREFS
Sequence in context: A018008 A104545 A027050 * A109249 A196423 A320177
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 02 2014
STATUS
approved