The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A109008 a(n) = gcd(n,4). 11
 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4, 1, 2, 1, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Period 4: repeat [4, 1, 2, 1]. - Wesley Ivan Hurt, Aug 31 2014 LINKS Index entries for linear recurrences with constant coefficients, signature (0,0,0,1). FORMULA a(n) = 1 + [2|n] + 2*[4|n] = 2 + (-1)^n + cos(n*Pi/2), where [x|y] = 1 when x divides y, 0 otherwise. a(n) = a(n-4) for n>3. Multiplicative with a(p^e) = gcd(p^e, 4). - David W. Wilson, Jun 12 2005 Dirichlet g.f.: (1  + 1/2^s + 2/4^s)*zeta(s). - R. J. Mathar, Feb 28 2011 G.f.: (4+x+2*x^2+x^3)/((1-x)*(1+x)*(1+x^2)). - R. J. Mathar, Apr 04 2011 a(n) = 1 + mod((n-1)^3, 4). - Wesley Ivan Hurt, Aug 31 2014 a(n) = 2 + cos(n*Pi) + cos(n*Pi/2). - Wesley Ivan Hurt, Jul 07 2016 E.g.f.: exp(-x) + 2*exp(x) + cos(x). - Ilya Gutkovskiy, Jul 07 2016 MAPLE A109008:=n->gcd(n, 4): seq(A109008(n), n=0..100); # Wesley Ivan Hurt, Aug 31 2014 MATHEMATICA Table[GCD[n, 4], {n, 0, 100}] (* Wesley Ivan Hurt, Aug 31 2014 *) PROG (Haskell) a109008 = gcd 4 a109008_list = cycle [4, 1, 2, 1]  -- Reinhard Zumkeller, Nov 25 2013 (MAGMA) [Gcd(n, 4) : n in [0..100]]; // Wesley Ivan Hurt, Aug 31 2014 (PARI) a(n)=gcd(n, 4) \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. A109004. Sequence in context: A087230 A030787 A176218 * A187025 A074695 A069098 Adjacent sequences:  A109005 A109006 A109007 * A109009 A109010 A109011 KEYWORD nonn,easy,mult AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 31 03:08 EDT 2020. Contains 333136 sequences. (Running on oeis4.)