login
A108461
Table read by antidiagonals: T(n,k) = number of factorizations of (n,k) into pairs (i,j) with i,j>=1, not both 1.
14
1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 4, 2, 4, 1, 2, 2, 4, 4, 2, 2, 1, 5, 2, 9, 2, 5, 1, 3, 2, 5, 4, 4, 5, 2, 3, 2, 7, 2, 11, 2, 11, 2, 7, 2, 2, 4, 7, 4, 5, 5, 4, 7, 4, 2, 1, 5, 4, 16, 2, 15, 2, 16, 4, 5, 1, 4, 2, 5, 9, 7, 5, 5, 7, 9, 5, 2, 4, 1, 11, 2, 11, 4, 21, 2, 21, 4, 11, 2, 11, 1, 2, 2, 11, 4, 5, 11, 7
OFFSET
1,5
COMMENTS
The rule of building products is (a,b)*(x,y) = (a*x,b*y).
The number of divisors of (n,k) is A143235(n,k)-1, where the subtraction of 1 means that the unit (1,1) is not admitted here. - R. J. Mathar, Nov 30 2017
LINKS
R. J. Mathar, Table of n, a(n) for n = 1..1711, the first 59 diagonals.
FORMULA
Dirichlet g.f.: A(s, t) = exp(B(s, t)/1 + B(2*s, 2*t)/2 + B(3*s, 3*t)/3 + ...) where B(s, t) = zeta(s)*zeta(t)-1.
EXAMPLE
1 1 1 2 1 ...
1 2 2 4 2 ...
1 2 2 4 2 ...
2 4 4 9 4 ...
1 2 2 4 2 ...
(6,2)=(6,1)*(1,2)=(3,2)*(2,1)=(3,1)*(2,2)=(1,2)*(6,1), so a(6,2)=5.
CROSSREFS
Columns 1-3: A001055, A057567, A057567.
Main diagonal: A108462.
Sequence in context: A286885 A365618 A254885 * A321004 A258595 A233544
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Jun 03 2005
STATUS
approved