OFFSET
1,9
COMMENTS
Conjectures:
(i) a(n) > 0 for all n > 1.
(ii) Any integer n > 1 can be written as k + m with k > 0 and m > 0 such that sigma(k)^2 + phi(m) (or sigma(k) + phi(m)^2) is prime.
Part (i) of the conjecture is stronger than the conjecture in A232270. We have verified it for n up to 10^8.
I verified the conjecture to 3*10^9. The conjecture is almost surely true. - Charles R Greathouse IV, Dec 13 2013
There are no counterexamples to conjecture (i) < 5.12 * 10^10. - Jud McCranie, Jul 23 2017
The conjectures appeared as Conjecture 3.31 in the linked 2017 paper. - Zhi-Wei Sun, Nov 30 2018
LINKS
Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Zhi-Wei Sun, Conjectures on representations involving primes, in: M. Nathanson (ed.), Combinatorial and Additive Number Theory II, Springer Proc. in Math. & Stat., Vol. 220, Springer, Cham, 2017, pp. 279-310. (See also arXiv:1211.1588 [math.NT], 2012-2017.)
EXAMPLE
a(10) = 1 since 10 = 1^2 + 9 with sigma(1^2) + phi(9) = 1 + 6 = 7 prime.
a(25) = 1 since 25 = 2^2 + 21 with sigma(2^2) + phi(21) = 7 + 12 = 19 prime.
a(34) = 1 since 34 = 4^2 + 18 with sigma(4^2) + phi(18) = 31 + 6 = 37 prime.
a(46) = 1 since 46 = 2^2 + 42 with sigma(2^2) + phi(42) = 7 + 12 = 19 prime.
a(106) = 1 since 106 = 3^2 + 97 with sigma(3^2) + phi(97) = 13 + 96 = 109 prime.
a(163) = 1 since 163 = 3^2 + 154 with sigma(3^2) + phi(154) = 13 + 60 = 73 prime.
a(265) = 1 since 265 = 11^2 + 144 with sigma(11^2) + phi(144) = 133 + 48 = 181 prime.
a(1789) = 1 since 1789 = 1^2 + 1788 with sigma(1^2) + phi(1788) = 1 + 592 = 593 prime.
a(1157) = 3, since 1157 = 10^2 + 1057 with sigma(10^2) + phi(1057) = 217 + 900 = 1117 prime, 1157 = 21^2 + 716 with sigma(21^2) + phi(716) = 741 + 356 = 1097 prime, and 1157 = 24^2 + 581 with sigma(24^2) + phi(581) = 1651 + 492 = 2143 prime. In this example, none of 10, 21 and 24 is a prime power.
MATHEMATICA
sigma[n_]:=Sum[If[Mod[n, d]==0, d, 0], {d, 1, n}]
a[n_]:=Sum[If[PrimeQ[sigma[k^2]+EulerPhi[n-k^2]], 1, 0], {k, 1, Sqrt[n/2]}]
Table[a[n], {n, 1, 100}]
PROG
(PARI) a(n)=sum(k=1, sqrtint(n\2), isprime(sigma(k^2)+eulerphi(n-k^2))) \\ Charles R Greathouse IV, Dec 12 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Dec 12 2013
STATUS
approved