This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108196 Expansion of (x-1)*(x+1) / (8*x^2 + 1 - 3*x + x^4 - 3*x^3). 4
 -1, -3, 0, 21, 55, 0, -377, -987, 0, 6765, 17711, 0, -121393, -317811, 0, 2178309, 5702887, 0, -39088169, -102334155, 0, 701408733, 1836311903, 0, -12586269025, -32951280099, 0, 225851433717, 591286729879, 0, -4052739537881 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Terms (or their respective absolute values) appear to be contained in A000045. Working with an offset of 1, this sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 3, P2 = 6, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-8,3,-1). H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277. H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume FORMULA a(0)=-1, a(1)=-3, a(2)=0, a(3)=21, a(n) = 3*a(n-1) - 8*a(n-2) + 3*a(n-3) - a(n-4). - Harvey P. Dale, Dec 25 2012 From Peter Bala, Mar 25 2014: (Start) The following formulas assume an offset of 1. a(n) = (-1)*A001906(n)*A010892(n-1). Equivalently, a(n) = (-1)*U(n-1,1/2)*U(n-1,3/2), where U(n,x) denotes the Chebyshev polynomial of the second kind. a(n) = (-1)*bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -3/2; 1, 3/2] and T(n,x) denotes the Chebyshev polynomial of the first kind. The ordinary generating function is the Hadamard product of -x/(1 - x + x^2) and x/(1 - 3*x + x^2). See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End) MAPLE seriestolist(series((x-1)*(x+1)/(8*x^2+1-3*x+x^4-3*x^3), x=0, 40)); MATHEMATICA CoefficientList[Series[(x-1)(x+1)/(8x^2+1-3x+x^4-3x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, -8, 3, -1}, {-1, -3, 0, 21}, 40] (* Harvey P. Dale, Dec 25 2012 *) PROG (Sage) [lucas_number1(n, 3, 1)*lucas_number1(n, 1, 1)*(-1) for n in xrange(1, 33)] # Zerinvary Lajos, Jul 06 2008 (PARI) x='x+O('x^50); Vec((x-1)*(x+1)/(8*x^2 +1 -3*x + x^4 - 3*x^3)) \\ G. C. Greubel, Aug 08 2017 CROSSREFS Cf. A000045, A100047. Sequence in context: A215678 A186747 A083289 * A013460 A013388 A057379 Adjacent sequences:  A108193 A108194 A108195 * A108197 A108198 A108199 KEYWORD easy,sign AUTHOR Creighton Dement, Jul 23 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 15:24 EDT 2019. Contains 323572 sequences. (Running on oeis4.)