login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A108198 Triangle read by rows: T(n,k) = binomial(2k+2,k+1)*binomial(n,k)/(k+2) (0 <= k <= n). 5
1, 1, 2, 1, 4, 5, 1, 6, 15, 14, 1, 8, 30, 56, 42, 1, 10, 50, 140, 210, 132, 1, 12, 75, 280, 630, 792, 429, 1, 14, 105, 490, 1470, 2772, 3003, 1430, 1, 16, 140, 784, 2940, 7392, 12012, 11440, 4862, 1, 18, 180, 1176, 5292, 16632, 36036, 51480, 43758, 16796, 1, 20, 225 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Also, with offset 1, triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and ending at the point (2k,0) (1 <= k <= n). A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps. For example, T(3,2)=4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDDL.
This sequence gives the coefficients of the Jensen polynomials (increasing powers of x) of degree n and shift 1 for the Catalan sequence A000108. See A098474 for a similar comment. - Wolfdieter Lang, Jun 25 2019
LINKS
E. Deutsch, E. Munarini, S. Rinaldi, Skew Dyck paths, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.
FORMULA
Sum of row n = A002212(n+1).
T(n,n) = Catalan(n+1) (A000108).
Sum_{k=1..n} k*T(n,k) = A026388(n).
With offset 1, T(n,k) = c(k)*binomial(n-1,k-1), where c(j) = binomial(2j,j)/(j+1) is a Catalan number (A000108).
G.f.: G-1, where G=G(t,z) satisfies G = 1 + t*z*G^2 + z*(G-1).
T(n, k) = 4^k*[x^k]hypergeometric([3/2, -n], [3], -x). - Peter Luschny, Feb 03 2015, based on an observation of Peter Bala in A254632.
T(n, k) = (-1)^k*Catalan(k+1)*Pochhammer(-n,k)/k!. - Peter Luschny, Feb 05 2015
EXAMPLE
Triangle begins:
1;
1, 2;
1, 4, 5;
1, 6, 15, 14;
1, 8, 30, 56, 42;
1, 10, 50, 140, 210, 132;
1, 12, 75, 280, 630, 792, 429;
MAPLE
T:=(n, k)->binomial(2*k+2, k+1)*binomial(n, k)/(k+2): for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form
h := n -> simplify(hypergeom([3/2, -n], [3], -x)):
seq(print(seq(4^k*coeff(h(n), x, k), k=0..n)), n=0..9); # Peter Luschny, Feb 03 2015
MATHEMATICA
Flatten[Table[Binomial[2k+2, k+1] Binomial[n, k]/(k+2), {n, 0, 10}, {k, 0, n}]] (* Harvey P. Dale, Jul 20 2013 *)
PROG
(Sage)
def A108198(n, k):
return (-1)^k*catalan_number(k+1)*rising_factorial(-n, k)/factorial(k)
for n in range(7): [A108198(n, k) for k in (0..n)] # Peter Luschny, Feb 05 2015
CROSSREFS
Mirror image of A126181.
Sequence in context: A050166 A124959 A081281 * A371686 A321000 A121289
KEYWORD
nonn,tabl,easy
AUTHOR
Emeric Deutsch, Jun 15 2005, Mar 30 2007
EXTENSIONS
Edited by N. J. A. Sloane at the suggestion of Andrew Plewe, Jun 16 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 14:49 EDT 2024. Contains 371914 sequences. (Running on oeis4.)