OFFSET
0,4
COMMENTS
Limit[a(n)/a(n-1),n->Infinity]={1.83929, 3.38298, 6.22226}
FORMULA
if Mod[n, 3]=0 then F[n] = Floor[beta*F[n-1]] if Mod[n, 3]=1 then F[n] = Floor[beta^2*F[n-1]] if Mod[n, 3]=2 then F[n] = Floor[beta^3*F[n-1]] a(n) = F[n]
MATHEMATICA
NSolve[x^3 - x^2 - x - 1 == 0, x] beta = 1.8392867552141612; F[1] = 1; F[2] = 1; F[n__] := F[n] = If[Mod[n, 3] == 0, Floor[beta*F[n - 1]], If[ Mod[n, 3] == 1, Floor[(beta^2)*F[n - 1]], Floor[(beta^3)*F[n - 1]]]] a = Table[F[n], {n, 1, 50}] an = Table[N[a[[n]]/a[[n - 1]]], {n, 6, 50}]
CROSSREFS
KEYWORD
nonn,uned
AUTHOR
Roger L. Bagula, Jun 13 2005
STATUS
approved