

A108171


Tribonacci version of A076662 using beta positive real Pisot root of x^3  x^2  x  1.


0



4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3, 4, 3, 3, 4, 3, 4, 3, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Three part composition of sequence based on the Fibonacci substitution twos order.


LINKS

Table of n, a(n) for n=0..98.


FORMULA

b(n) = 1 + ceiling((n1)*beta); a(n) = b(n)  b(n1).


MATHEMATICA

NSolve[x^3  x^2  x  1 = 0, x] beta = 1.8392867552141612 a[n_] = 1 + Ceiling[(n  1)*beta^2] (* A007066 like*) aa = Table[a[n], {n, 1, 100}] (* A076662like *) b = Table[a[n]  a[n  1], {n, 2, Length[aa]}] F[1] = 2; F[n_] := F[n] = F[n  1] + b[[n]] (* A000195like *) c = Table[F[n], {n, 1, Length[b]  1}]


CROSSREFS

Cf. A007066, A076662, A000195.
Sequence in context: A106049 A238234 A136627 * A231475 A106055 A171783
Adjacent sequences: A108168 A108169 A108170 * A108172 A108173 A108174


KEYWORD

nonn,uned


AUTHOR

Roger L. Bagula, Jun 13 2005


STATUS

approved



