

A106919


Primes of the form 3x^2+xy+5y^2, with x and y any integer.


2



3, 5, 7, 19, 29, 41, 53, 79, 107, 127, 137, 167, 181, 193, 199, 239, 241, 251, 257, 263, 271, 277, 281, 293, 307, 311, 331, 359, 379, 433, 449, 487, 491, 499, 523, 557, 577, 593, 599, 607, 617, 619, 643, 647, 653, 661, 709, 757, 761, 829, 853, 877, 883, 907
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Discriminant=59.
Primes p such that the polynomial x^32x^21 is irreducible over Zp. The polynomial discriminant is also 59.  T. D. Noe, May 13 2005


LINKS

Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)


MATHEMATICA

Union[QuadPrimes2[3, 1, 5, 10000], QuadPrimes2[3, 1, 5, 10000]] (* see A106856 *)


CROSSREFS

Sequence in context: A184805 A079131 A179687 * A005850 A052334 A154526
Adjacent sequences: A106916 A106917 A106918 * A106920 A106921 A106922


KEYWORD

nonn,easy,changed


AUTHOR

T. D. Noe, May 09 2005


STATUS

approved



