OFFSET
1,1
COMMENTS
Discriminant = -56.
Also primes congruent to {3,5,13,19,27,45} mod 56. - Vincenzo Librandi, Jul 02 2016
The theta series for the quadratic form 3x^2 + 2xy + 5y^2 is the g.f. of A028928. - Michael Somos, Jul 02 2016
Legendre symbol (-14, a(n)) = Kronecker symbol (a(n), 14) = 1. Also, this sequence lists primes p such that Kronecker symbol (p, 2) = Legendre symbol (p, 7) = -1, i.e., primes p == 3, 5 (mod 8) and 3, 5, 6 (mod 7). - Jianing Song, Sep 04 2018
LINKS
Vincenzo Librandi and Ray Chandler, Table of n, a(n) for n = 1..10000 [First 1000 terms from Vincenzo Librandi]
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS (Index to related sequences, programs, references)
EXAMPLE
59 is in the sequence since it is prime, and 59 = 3x^2 + 2xy + 5y^2 with x = 3 and y = 2. - Michael B. Porter, Jul 02 2016
MATHEMATICA
Union[QuadPrimes2[3, 2, 5, 10000], QuadPrimes2[3, -2, 5, 10000]] (* see A106856 *)
Select[Prime@Range[600], MemberQ[{3, 5, 13, 19, 27, 45}, Mod[#, 56]] &] (* Vincenzo Librandi, Jul 02 2016 *)
PROG
(Magma) [p: p in PrimesUpTo(3000) | p mod 56 in {3, 5, 13, 19, 27, 45}]; // Vincenzo Librandi, Jul 02 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, May 09 2005
STATUS
approved