This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106601 Rauzy-like 3-symbol substitution that gives a tile: Characteristic polynomial: x^3-3*x^2-x-1. 0

%I

%S 3,1,2,3,3,2,3,3,1,2,3,3,3,1,2,3,3,3,3,1,2,3,3,3,1,2,3,3,2,3,3,1,2,3,

%T 3,3,1,2,3,3,3,1,2,3,3,2,3,3,1,2,3,3,3,1,2,3,3,3,1,2,3,3,3,1,2,3,3,2,

%U 3,3,1,2,3,3,3,1,2,3,3,3,1,2,3,3,2,3,3,1,2,3,3,3,1,2,3,3,3,3,1,2,3,3,3,1,2

%N Rauzy-like 3-symbol substitution that gives a tile: Characteristic polynomial: x^3-3*x^2-x-1.

%C To get tile: ( tile has edges like the (2,3) Akiyama curly tile) aa=p[12] rule = NSolve[Det[M - x*IdentityMatrix[n0]] == 0, x][[1]] * graphing subroutine*) bb = aa /. 1 -> {Re[x], Im[x]} /. 2 -> {Re[x^2], Im[x^2]} /. 3 -> {Re[x^3], Im[x^3]} /. rule; ListPlot[FoldList[Plus, {0, 0}, bb], PlotJoined -> False, PlotRange -> All, Axes -> False];

%D Curtis McMullen, Prym varieties and Teichmuller curves.

%F 1->{2}, 2->{3}, 3->{3, 1, 2, 3, 3}

%t s[1] = {2}; s[2] = {3}; s[3] = {3, 1, 2, 3, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[7]

%K nonn,uned

%O 0,1

%A _Roger L. Bagula_, May 10 2005

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .