This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A106601 Rauzy-like 3-symbol substitution that gives a tile: Characteristic polynomial: x^3-3*x^2-x-1. 0
 3, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 2, 3, 3, 1, 2, 3, 3, 3, 1, 2, 3, 3, 3, 3, 1, 2, 3, 3, 3, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS To get tile: ( tile has edges like the (2,3) Akiyama curly tile) aa=p[12] rule = NSolve[Det[M - x*IdentityMatrix[n0]] == 0, x][[1]] * graphing subroutine*) bb = aa /. 1 -> {Re[x], Im[x]} /. 2 -> {Re[x^2], Im[x^2]} /. 3 -> {Re[x^3], Im[x^3]} /. rule; ListPlot[FoldList[Plus, {0, 0}, bb], PlotJoined -> False, PlotRange -> All, Axes -> False]; REFERENCES Curtis McMullen, Prym varieties and Teichmuller curves. LINKS FORMULA 1->{2}, 2->{3}, 3->{3, 1, 2, 3, 3} MATHEMATICA s[1] = {2}; s[2] = {3}; s[3] = {3, 1, 2, 3, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] aa = p[7] CROSSREFS Sequence in context: A026181 A322849 A322850 * A110030 A211948 A021766 Adjacent sequences:  A106598 A106599 A106600 * A106602 A106603 A106604 KEYWORD nonn,uned AUTHOR Roger L. Bagula, May 10 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 09:55 EST 2019. Contains 320390 sequences. (Running on oeis4.)