login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A106456
Natural numbers mapped to Dyck path encodings of the rooted plane trees obtained by recursing on the exponents of the GF(2)[X] factorization of n.
9
0, 10, 1010, 1100, 110010, 101100, 101010, 110100, 10110010, 11001100, 10101010, 10110100, 1010101010, 10101100, 11010010, 111000, 11100010, 1011001100, 101010101010, 1100110100, 11001010, 1010101100, 101010110010
OFFSET
1,2
COMMENTS
Note that we recurse on the exponent + 1 for all other irreducible polynomials except the largest one in the GF(2)[X] factorization. Thus for 6 = A048723(3,1) X A048723(2,1) we construct a tree by joining trees 1 and 2 with a new root node, for 7 = A048723(7,1) X A048723(3,0) X A048723(2,0) we join three 1-trees (single leaves) with a new root node, for 8 = A048273(2,3) we add a single edge below tree 3 and for 9 = A048723(7,1) X A048723(3,1) X A048273(2,0) we connect the trees 1 and 2 and 1 with a new root node.
EXAMPLE
The rooted plane trees encoded here are:
.....................o....o..........o.........o...o....o.....
.....................|....|..........|..........\./.....|.....
.......o....o...o....o....o...o..o...o..o.o.o....o....o.o.o...
.......|.....\./.....|.....\./....\./....\|/.....|.....\|/....
*......*......*......*......*......*......*......*......*.....
1......2......3......4......5......6......7......8......9.....
CROSSREFS
a(n) = A007088(A106455(n)) = A075166(A106443(n)). GF(2)[X]-analog of A075166. Permutation of A063171. Same sequence shown in decimal: A106455. The digital length of each term / 2 (the number of o-nodes in the corresponding trees) is given by A106457. Cf. A106451-A106454.
Sequence in context: A075166 A071671 A075171 * A079214 A377192 A163662
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, May 09 2005
STATUS
approved