login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A048723 Binary "exponentiation" without carries: {0..y}^{0..x}, where y (column index) is binary encoding of GF(2)-polynomial and x (row index) is the exponent. 21
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 8, 5, 4, 1, 0, 1, 16, 15, 16, 5, 1, 0, 1, 32, 17, 64, 17, 6, 1, 0, 1, 64, 51, 256, 85, 20, 7, 1, 0, 1, 128, 85, 1024, 257, 120, 21, 8, 1, 0, 1, 256, 255, 4096, 1285, 272, 107, 64, 9, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

LINKS

Table of n, a(n) for n=0..65.

FORMULA

a(n) = Xpower( (n-((trinv(n)*(trinv(n)-1))/2)), (((trinv(n)-1)*(((1/2)*trinv(n))+1))-n) );

EXAMPLE

1 0 0 0 0 0 0 0 0 ...

1 1 1 1 1 1 1 1 1 ...

1 2 4 8 16 32 64 128 256 ...

1 3 5 15 17 51 85 255 257 ...

1 4 16 64 256 1024 4096 16384 65536 ...

MAPLE

# Xmult and trinv have been given in A048720.

Xpower := proc(nn, mm) option remember; if(0 = mm) then RETURN(1); # By definition, also 0^0 = 1. else RETURN(Xmult(nn, Xpower(nn, mm-1))); fi; end;

MATHEMATICA

trinv[n_] := Floor[(1 + Sqrt[1 + 8*n])/2];

Xmult[nn_, mm_] := Module[{n = nn, m = mm, s = 0}, While[n > 0, If[1 == Mod[n, 2], s = BitXor[s, m]]; n = Floor[n/2]; m = m*2]; s];

Xpower[nn_, mm_] := Xpower[nn, mm] = If[0 == mm, 1, Xmult[nn, Xpower[nn, mm - 1]]];

a[n_] := Xpower[n - (trinv[n]*(trinv[n] - 1))/2, (trinv[n] - 1)*((1/2)* trinv[n] + 1) - n];

Table[a[n], {n, 0, 65}] (* Jean-François Alcover, Mar 04 2016, adapted from Maple *)

CROSSREFS

Cf. ordinary power table A004248 and A034369, A034373.

Cf. A048710. Row 3: A001317, Row 5: A038183 (bisection of row 3), Row 7: A038184. Column 2: A000695, diagonal of A048720. Diagonal: A048731.

Sequence in context: A055340 A058716 A119328 * A088455 A004248 A034373

Adjacent sequences:  A048720 A048721 A048722 * A048724 A048725 A048726

KEYWORD

nonn,tabl

AUTHOR

Antti Karttunen, Apr 26 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified January 18 19:37 EST 2018. Contains 297865 sequences.