login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A105612
Number of nonzero quadratic residues (mod n) (cf. A000224).
8
0, 1, 1, 1, 2, 3, 3, 2, 3, 5, 5, 3, 6, 7, 5, 3, 8, 7, 9, 5, 7, 11, 11, 5, 10, 13, 10, 7, 14, 11, 15, 6, 11, 17, 11, 7, 18, 19, 13, 8, 20, 15, 21, 11, 11, 23, 23, 7, 21, 21, 17, 13, 26, 21, 17, 11, 19, 29, 29, 11, 30, 31, 15, 11, 20, 23, 33, 17, 23, 23, 35, 11, 36, 37, 21, 19, 23
OFFSET
1,5
LINKS
S. R. Finch and Pascal Sebah, Squares and Cubes Modulo n, arXiv:math/0604465 [math.NT], 2006-2016.
E. J. F. Primrose, The number of quadratic residues mod m, Math. Gaz. v. 61 (1977) n. 415, 60-61.
W. D. Stangl, Counting Squares in Z_n, Mathematics Magazine, pp. 285-289, Vol. 69 No. 4 (October 1996).
Eric Weisstein's World of Mathematics, Quadratic Residue
FORMULA
a(n) = A000224(n) - 1.
MATHEMATICA
a[n_]:=Count[Union[Mod[Range[Floor[n/2]]^2, n]], _?Positive]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Feb 09 2011 *)
PROG
(PARI) /* based on code by Franklin T. Adams-Watters, see A000224 */
A105612(n)=local(v, i); v=vector(n, i, 0); for(i=0, floor(n/2), v[i^2%n+1]=1); sum(i=2, n, v[i]) \\ Michael B. Porter, May 04 2010
(PARI) a(n)=my(f=factor(n)); prod(i=1, #f[, 1], if(f[i, 1]==2, 2^f[1, 2]\6+2, f[i, 1]^(f[i, 2]+1)\(2*f[i, 1]+2)+1))-1 \\ Charles R Greathouse IV, Sep 10 2013
(Haskell)
a105612 = (subtract 1) . a000224 -- Reinhard Zumkeller, Aug 01 2012
CROSSREFS
Sequence in context: A046677 A283104 A109747 * A141744 A089783 A302939
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Apr 15 2005
STATUS
approved