This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A105392 Frobenius number of the subsemigroup of the natural numbers generated by successive pairs of Lucas numbers. 1
 0, 5, 17, 59, 169, 475, 1287, 3449, 9149, 24155, 63557, 166919, 437839, 1147645, 3006777, 7875419, 20623889, 54003395, 141397847, 370208849, 969258949, 2537616955, 6643671117, 17393524559, 45537109919, 119218140725 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Prime values of this are a(n) where n = 2, 3, 4, 8, 12, 16, 19, 28, 30. Semiprime values of this are a(n) where n = 5, 9, 10, 11, 14, 15, 20, 21, 27, 32. See the b-file for A000204 for an extended list of Lucas numbers. REFERENCES R. Froberg, C. Gottlieb and R. Haggkvist, "On numerical semigroups", Semigroup Forum, 35 (1987), 63-83 (for definition of Frobenius number). LINKS Eric Weisstein's World of Mathematics, Lucas numbers. FORMULA a(n)=(L(n)-1)*(L(n+1)-1)-1 where L(n) is the n-th Lucas number A000204(n). a(n) = A002878(n)-A000204(n+2)+(-1)^n, for n>1. [Ralf Stephan, Nov 15 2010, index shifted by R. J. Mathar, Nov 16 2010] G.f.: x^2*(5+2*x+3*x^2-x^4)/(1+x)/(1-3*x+x^2)/(1-x-x^2). [Colin Barker, Feb 17 2012] EXAMPLE a(3) = 17 because the 3rd and 4th Lucas numbers are 4 and 7, so a(3) = (4-1)*(7-1)-1 = 17. Or, a(3)=17 because 17 is the largest positive integer that is not a nonnegative linear combination of 4 and 7. MAPLE A000204 := proc(n) option remember; if n = 1 then 1; elif n = 2 then 3; else         procname(n-1)+procname(n-2) ; end if; end proc: A105392 :=proc(n) A000204(2*n+1)-A000204(n+2)+(-1)^n ; end proc: seq(A105392(n), n=0..20) ; # R. J. Mathar, Nov 16 2010 CROSSREFS Cf. A000204, A059769. Sequence in context: A180502 A261515 A171838 * A090857 A287804 A149657 Adjacent sequences:  A105389 A105390 A105391 * A105393 A105394 A105395 KEYWORD easy,nonn AUTHOR Jonathan Vos Post, May 01 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.