|
|
A104770
|
|
G.f. (1+x^2)/(1+x-x^3).
|
|
2
|
|
|
1, -1, 2, -1, 0, 2, -3, 3, -1, -2, 5, -6, 4, 1, -7, 11, -10, 3, 8, -18, 21, -13, -5, 26, -39, 34, -8, -31, 65, -73, 42, 23, -96, 138, -115, 19, 119, -234, 253, -134, -100, 353, -487, 387, -34, -453, 840, -874, 421, 419, -1293, 1714, -1295, 2, 1712, -3007, 3009, -1297, -1710, 4719, -6016
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A floretion-generated sequence.
|
|
LINKS
|
Table of n, a(n) for n=0..60.
Index entries for linear recurrences with constant coefficients, signature (-1,0,1)
|
|
FORMULA
|
Recurrence: a(n+3) = a(n) - a(n+2); a(0) = 1, a(1) = -1, a(2) = 2.
a(n+1) - a(n) = ((-1)^(n+1))*a(n+5); a(n) = A104771(n) - A104769(n).
a(n+1) = -[A104769(n) + A104769(n+2)], n>=0. -- Ralf Stephan
|
|
MATHEMATICA
|
CoefficientList[Series[(1+x^2)/(1+x-x^3), {x, 0, 60}], x] (* or *) LinearRecurrence[ {-1, 0, 1}, {1, -1, 2}, 70] (* Harvey P. Dale, Jan 27 2013 *)
|
|
PROG
|
Floretion Algebra Multiplication Program, FAMP Code: Define A = + .5'i + .5'j + .5'k + .5e and B = + .5'i + .5i' + .5'ii' + .5e. Then (a(n)) = jesloop(infty)-jesleftfor[A*B], ForType: 1A.
|
|
CROSSREFS
|
Sequence in context: A128763 A127597 A167749 * A296529 A110280 A061009
Adjacent sequences: A104767 A104768 A104769 * A104771 A104772 A104773
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Creighton Dement, Mar 24 2005
|
|
EXTENSIONS
|
Edited by Ralf Stephan, Apr 05 2009
|
|
STATUS
|
approved
|
|
|
|