login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A104770
Expansion of g.f. (1+x^2)/(1+x-x^3).
2
1, -1, 2, -1, 0, 2, -3, 3, -1, -2, 5, -6, 4, 1, -7, 11, -10, 3, 8, -18, 21, -13, -5, 26, -39, 34, -8, -31, 65, -73, 42, 23, -96, 138, -115, 19, 119, -234, 253, -134, -100, 353, -487, 387, -34, -453, 840, -874, 421, 419, -1293, 1714, -1295, 2, 1712, -3007, 3009, -1297, -1710, 4719, -6016
OFFSET
0,3
COMMENTS
A floretion-generated sequence.
Floretion Algebra Multiplication Program, FAMP Code: Define A = + .5'i + .5'j + .5'k + .5e and B = + .5'i + .5i' + .5'ii' + .5e. Then (a(n)) = jesloop(infty)-jesleftfor[A*B], ForType: 1A.
FORMULA
Recurrence: a(n+3) = a(n) - a(n+2); a(0) = 1, a(1) = -1, a(2) = 2.
a(n+1) - a(n) = ((-1)^(n+1))*a(n+5); a(n) = A104771(n) - A104769(n).
a(n+1) = -(A104769(n) + A104769(n+2)), n>=0. - Ralf Stephan, Apr 05 2009
MATHEMATICA
CoefficientList[Series[(1+x^2)/(1+x-x^3), {x, 0, 60}], x] (* or *) LinearRecurrence[ {-1, 0, 1}, {1, -1, 2}, 70] (* Harvey P. Dale, Jan 27 2013 *)
CROSSREFS
Sequence in context: A128763 A127597 A167749 * A296529 A110280 A061009
KEYWORD
sign,easy
AUTHOR
Creighton Dement, Mar 24 2005
EXTENSIONS
Edited by Ralf Stephan, Apr 05 2009
STATUS
approved