login
A104523
Numbers that are neither Fibonacci nor Lucas numbers.
1
6, 9, 10, 12, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86
OFFSET
1,1
LINKS
MAPLE
lucas := proc(n::integer) if n = 0 then RETURN(2) ; elif n = 1 then RETURN(1) ; else RETURN(combinat[fibonacci](n-1)+combinat[fibonacci](n+1)) ; fi ; end : islucas := proc(i::integer) local lucn, n ; for n from 0 to i do lucn := lucas(n) ; if lucn = i then RETURN(1) ; elif lucn > i then RETURN(0) ; fi ; od : end : isfibo := proc(i::integer) local fibn, n ; for n from 0 to i+1 do fibn := combinat[fibonacci](n) ; if fibn = i then RETURN(1) ; elif fibn > i then RETURN(0) ; fi ; od : end : for n from 0 to 100 do if islucas(n) = 0 and isfibo(n) = 0 then printf("%d, ", n) ; fi ; od : # R. J. Mathar, Apr 23 2006
MATHEMATICA
a := {1, 3}; For[n = 3, n <= 100, n++, a=Append[a, a[[n-1]]+a[[n-2]]]]; Complement[Range[150], a, Table[Fibonacci[n], {n, 1, 100}]] (* Stefan Steinerberger, Apr 17 2006 *)
Module[{nn=12, fib, luc}, fib=Fibonacci[Range[nn]]; luc=LucasL[Range[nn]]; Complement[ Range[fib[[-1]]], luc, fib]] (* Harvey P. Dale, Mar 10 2019 *)
CROSSREFS
Intersection of A001690 and A090946.
Sequence in context: A293826 A103092 A337940 * A091886 A333357 A111774
KEYWORD
nonn,easy
AUTHOR
Ido Romano (idoromano(AT)gmail.com), Apr 20 2005
EXTENSIONS
More terms from Stefan Steinerberger and Atilla Bora (borabanana(AT)gmail.com), Apr 17 2006
STATUS
approved