OFFSET
1,1
LINKS
Robert Price, Table of n, a(n) for n = 1..1000
FORMULA
a(n)^17 + 1 is semiprime (A001358).
EXAMPLE
2^17 + 1 = 131073 = 3 * 43691,
58^17 + 1 = 951208868148684143308060622849 = 59 * 16122184205909900734034925811,
66^17 + 1 = 8555529718761317069203003539457 = 67 * 127694473414348015958253784171,
1050^17 + 1 = 2292018317801032401637344360351562500000000000000001 = 1051 * 2180797638250268698037435166842590390104662226451.
MATHEMATICA
Select[Range[1000000], PrimeQ[# + 1] && PrimeQ[(#^17 + 1)/(# + 1)] &] (* Robert Price, Mar 10 2015 *)
Select[Range[5200], PrimeOmega[#^17+1]==2&] (* Harvey P. Dale, Mar 07 2017 *)
PROG
(PARI) for(n=1, 3000, if(!ispseudoprime(n^17+1), forprime(p=1, 10^4, if((n^17+1)%p==0, if(ispseudoprime((n^17+1)/p), print1(n, ", ")); break)))) \\ Derek Orr, Mar 09 2015
(Magma) IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1200]|IsSemiprime(n^17+1)]; // Vincenzo Librandi, Mar 10 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 19 2005
EXTENSIONS
a(14)-a(46) from Robert Price, Mar 09 2015
STATUS
approved