login
A104494
Positive integers n such that n^17 + 1 is semiprime (A001358).
14
2, 58, 66, 166, 268, 270, 408, 600, 672, 808, 822, 970, 1050, 1090, 1150, 1200, 1212, 1380, 1578, 1752, 1912, 1950, 1986, 2016, 2038, 2292, 2340, 2548, 2590, 2656, 2718, 2800, 2856, 3162, 3300, 3342, 3738, 4138, 4152, 4228, 4270, 4272, 4362, 4782, 5080, 5166
OFFSET
1,1
LINKS
FORMULA
a(n)^17 + 1 is semiprime (A001358).
EXAMPLE
2^17 + 1 = 131073 = 3 * 43691,
58^17 + 1 = 951208868148684143308060622849 = 59 * 16122184205909900734034925811,
66^17 + 1 = 8555529718761317069203003539457 = 67 * 127694473414348015958253784171,
1050^17 + 1 = 2292018317801032401637344360351562500000000000000001 = 1051 * 2180797638250268698037435166842590390104662226451.
MATHEMATICA
Select[Range[1000000], PrimeQ[# + 1] && PrimeQ[(#^17 + 1)/(# + 1)] &] (* Robert Price, Mar 10 2015 *)
Select[Range[5200], PrimeOmega[#^17+1]==2&] (* Harvey P. Dale, Mar 07 2017 *)
PROG
(PARI) for(n=1, 3000, if(!ispseudoprime(n^17+1), forprime(p=1, 10^4, if((n^17+1)%p==0, if(ispseudoprime((n^17+1)/p), print1(n, ", ")); break)))) \\ Derek Orr, Mar 09 2015
(Magma) IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..1200]|IsSemiprime(n^17+1)]; // Vincenzo Librandi, Mar 10 2015
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Apr 19 2005
EXTENSIONS
a(14)-a(46) from Robert Price, Mar 09 2015
STATUS
approved