login
A359242
Consider the race between primes, squarefree semiprimes, ..., products of k distinct primes; sequence indicates when one overtakes another to give a new race leader.
1
2, 58, 61, 65, 73, 77, 1279789, 1280057, 1280066, 1280073, 1280437, 1280441, 1281155, 1281161, 1281165, 1281179, 1281190, 1281243, 1281247, 1281262, 1281271, 1281313, 1281365
OFFSET
1,1
COMMENTS
This is A276176 for squarefree integers as listed in A340316 table.
PROG
(PARI) lista() = {my(nb = 10^7); my(ip = 1); while (factorback(primes(ip)) < nb, ip++); my(vp = vector(ip), list = List([2]), listi = List([1]), lastnb=1, lasti=1, nba = 3, nbb = nb); vp[lasti]++; for (i=1, 2, forsquarefree(isqf=nba, nbb, my(newi = omega(isqf[2])); vp[newi]++; if (newi != lasti, if (vp[newi] > vp[lasti], lasti = newi; listput(list, isqf[1]); listput(listi, vp[newi]); ); ); ); nba = nbb + 1; nbb = nbb + nb; ); Vec(list); } \\ Michel Marcus, Dec 22 2022
CROSSREFS
Essentially the same as A335293.
Sequence in context: A058196 A024237 A030263 * A090743 A104494 A121931
KEYWORD
nonn,more
AUTHOR
Michel Marcus, Dec 22 2022
EXTENSIONS
Name clarified by Peter Munn, Dec 31 2022
STATUS
approved