

A103219


Triangle read by rows: T(n,k) = (n+1k)*(4*(n+1k)^2  1)/3+2*k*(n+1k)^2.


2



1, 10, 3, 35, 18, 5, 84, 53, 26, 7, 165, 116, 71, 34, 9, 286, 215, 148, 89, 42, 11, 455, 358, 265, 180, 107, 50, 13, 680, 553, 430, 315, 212, 125, 58, 15, 969, 808, 651, 502, 365, 244, 143, 66, 17, 1330, 1131, 936, 749, 574, 415, 276, 161, 74, 19, 1771, 1530, 1293
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

The triangle is generated from the product B * A of the infinite lower triangular matrices A =
1 0 0 0...
3 1 0 0...
5 3 1 0...
7 5 3 1...
...
and B =
1 0 0 0...
1 3 0 0...
1 3 5 0...
1 3 5 7...
...


LINKS

Table of n, a(n) for n=0..57.


EXAMPLE

Triangle begins:
1,
10,3,
35,18,5,
84,53,26,7,
165,116,71,34,9,
286,215,148,89,42,11,


MATHEMATICA

T[n_, k_] := (n + 1  k)*(4*(n + 1  k)^2  1)/3 + 2*k*(n + 1  k)^2; Flatten[ Table[ T[n, k], {n, 0, 10}, {k, 0, n}]] (* Robert G. Wilson v, Feb 10 2005 *)


PROG

(PARI) T(n, k)=(n+1k)*(4*(n+1k)^21)/3+2*k*(n+1k)^2; for(i=0, 10, for(j=0, i, print1(T(i, j), ", ")); print())


CROSSREFS

Row sums give A103220.
T(n, 0 = n*(4*n^2  1)/3 = A000447(n+1);
T(n+1, n)= 8*n+2 = A017089(n+1);
Cf. A103218 (for product A*B), A103220.
Sequence in context: A079670 A343563 A050100 * A260680 A111126 A165790
Adjacent sequences: A103216 A103217 A103218 * A103220 A103221 A103222


KEYWORD

nonn,tabl


AUTHOR

Lambert Klasen (lambert.klasen(AT)gmx.de) and Gary W. Adamson, Jan 26 2005


STATUS

approved



