login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A102785 G.f.: (x-1)/(-2*x^2+3*x^3+2*x-1). 0
1, 1, 0, 1, 5, 8, 9, 17, 40, 73, 117, 208, 401, 737, 1296, 2321, 4261, 7768, 13977, 25201, 45752, 83033, 150165, 271520, 491809, 891073, 1613088, 2919457, 5285957, 9572264, 17330985, 31375313, 56805448 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Inverse binomial transform of A078017. Inversion of A052102.

LINKS

Table of n, a(n) for n=0..32.

Index entries for linear recurrences with constant coefficients, signature (2,-2,3).

FORMULA

a(n+3) = 2a(n+2) - 2a(n+1) + 3a(n), a(0) = 1, a(1) = 1, a(2) = 0

a(n)=sum(k=1..n, sum(i=k..n, (sum(j=0..k, binomial(j,-3*k+2*j+i)*(-2)^(-3*k+2*j+i)*3^(k-j)*binomial(k,j)))*binomial(n+k-i-1,k-1))), n>0, a(0)=1. [From Vladimir Kruchinin, May 05 2011]

PROG

Floretion Algebra Multiplication Program, FAMP Code: 4jbasekseq[ (+ 'ii' + 'jj' + 'ij' + 'ji' + e)*x) ] where x is defined as 1/4 times the sum of all 16 floretion basis vectors.

(Maxima)

a(n):=sum(sum((sum(binomial(j, -3*k+2*j+i)*(-2)^(-3*k+2*j+i)*3^(k-j)*binomial(k, j), j, 0, k))*binomial(n+k-i-1, k-1), i, k, n), k, 1, n); [From Vladimir Kruchinin, May 05 2011]

(Maxima) makelist(coeff(taylor((x-1)/(-2*x^2+3*x^3+2*x-1), x, 0, n), x, n), n, 0, 32);  [Bruno Berselli, May 30 2011]

CROSSREFS

Cf. A078017, A052102, A077952.

Sequence in context: A045221 A046287 A051220 * A260348 A276934 A127493

Adjacent sequences:  A102782 A102783 A102784 * A102786 A102787 A102788

KEYWORD

nonn

AUTHOR

Creighton Dement, Feb 11 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 16:10 EST 2017. Contains 294936 sequences.