login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102785
G.f.: (x-1)/(-2*x^2 + 3*x^3 + 2*x - 1).
0
1, 1, 0, 1, 5, 8, 9, 17, 40, 73, 117, 208, 401, 737, 1296, 2321, 4261, 7768, 13977, 25201, 45752, 83033, 150165, 271520, 491809, 891073, 1613088, 2919457, 5285957, 9572264, 17330985, 31375313, 56805448
OFFSET
0,5
COMMENTS
Inverse binomial transform of A078017. Inversion of A052102.
Floretion Algebra Multiplication Program, FAMP Code: 4jbasekseq[ (+ 'ii' + 'jj' + 'ij' + 'ji' + e)*x) ] where x is defined as 1/4 times the sum of all 16 floretion basis vectors.
FORMULA
a(n+3) = 2a(n+2) - 2a(n+1) + 3a(n), a(0) = 1, a(1) = 1, a(2) = 0
a(n) = Sum(k=1..n, Sum(i=k..n, (Sum(j=0..k, binomial(j,-3*k+2*j+i)*(-2)^(-3*k+2*j+i)*3^(k-j)*binomial(k,j)))*binomial(n+k-i-1,k-1))), n > 0, a(0)=1. - Vladimir Kruchinin, May 05 2011
PROG
(Maxima)
a(n):=sum(sum((sum(binomial(j, -3*k+2*j+i)*(-2)^(-3*k+2*j+i)*3^(k-j)*binomial(k, j), j, 0, k))*binomial(n+k-i-1, k-1), i, k, n), k, 1, n); /* Vladimir Kruchinin, May 05 2011 */
(Maxima) makelist(coeff(taylor((x-1)/(-2*x^2+3*x^3+2*x-1), x, 0, n), x, n), n, 0, 32); /* Bruno Berselli, May 30 2011 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Creighton Dement, Feb 11 2005
STATUS
approved