The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078017 Expansion of (1-x)/(1-x+x^2+2*x^3). 2
 1, 0, -1, -3, -2, 3, 11, 12, -5, -39, -58, -9, 127, 252, 143, -363, -1010, -933, 803, 3756, 4819, -543, -12874, -21969, -8009, 39708, 91655, 67965, -103106, -354381, -387205, 173388, 1269355, 1870377, 254246, -4154841, -8149841, -4503492, 11956031, 32759205, 29810158, -26861109 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (1,-1,-2). FORMULA G.f.: (1-x)/(1-x+x^2+2*x^3). a(n) = A077952(n) - A077952(n-1). - G. C. Greubel, Jun 29 2019 MATHEMATICA LinearRecurrence[{1, -1, -2}, {1, 0, -1}, 50] (* or *) CoefficientList[ Series[(1-x)/(1-x+x^2+2*x^3), {x, 0, 50}], x] (* G. C. Greubel, Jun 29 2019 *) PROG (PARI) Vec((1-x)/(1-x+x^2+2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 27 2012 (MAGMA) R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1-x)/(1-x+x^2+2*x^3) )); // G. C. Greubel, Jun 29 2019 (Sage) ((1-x)/(1-x+x^2+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 29 2019 (GAP) a:=[1, 0, -1];; for n in [4..50] do a[n]:=a[n-1]-a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, Jun 29 2019 CROSSREFS Cf. A077952. Sequence in context: A290093 A186102 A170848 * A169816 A291739 A057053 Adjacent sequences:  A078014 A078015 A078016 * A078018 A078019 A078020 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 17 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 02:02 EDT 2020. Contains 334758 sequences. (Running on oeis4.)