login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102363
Triangle read by rows, constructed by a Pascal-like rule with left edge = 2^k, right edge = 2^(k+1)-1 (k >= 0).
6
1, 2, 3, 4, 5, 7, 8, 9, 12, 15, 16, 17, 21, 27, 31, 32, 33, 38, 48, 58, 63, 64, 65, 71, 86, 106, 121, 127, 128, 129, 136, 157, 192, 227, 248, 255, 256, 257, 265, 293, 349, 419, 475, 503, 511, 512, 513, 522, 558, 642, 768, 894, 978, 1014, 1023, 1024, 1025, 1035, 1080, 1200, 1410, 1662, 1872, 1992, 2037, 2047
OFFSET
0,2
COMMENTS
First column right of center divided by 3 equals powers of 4.
Right of left edge, sums of rows are divisible by 3.
Apparently the number of terms per row plus the number of numbers in natural order skipped per row equals a power of 2. - David Williams, Jun 27 2009
LINKS
FORMULA
G.f.: Sum_{n>=0} x^n * (1+x)^tr(n) = Sum_{n>=0} a(n)*x^n, where tr(n) = A002024(n+1) = floor(sqrt(2*n+1) + 1/2). - Paul D. Hanna, Feb 19 2016
G.f.: Sum_{n>=1} x^(n*(n-1)/2) * (1-x^n)/(1-x) * (1+x)^n = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Feb 20 2016
a(n) = A007318(n-1) + a(n-1). - Jon Maiga, Dec 22 2018
EXAMPLE
This triangle begins:
1
2 3
4 5 7
8 9 12 15
16 17 21 27 31
32 33 38 48 58 63
64 65 71 86 106 121 127
128 129 136 157 192 227 248 255
256 257 265 293 349 419 475 503 511
G.f. of this sequence in flattened form:
A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 7*x^5 + 8*x^6 + 9*x^7 + 12*x^8 + 15*x^9 + 16*x^10 + 17*x^11 + 21*x^12 + 27*x^13 + 31*x^14 + 32*x^15 + ...
such that
A(x) = (1+x) + x*(1+x)^2 + x^2*(1+x)^2 + x^3*(1+x)^3 + x^4*(1+x)^3 + x^5*(1+x)^3 + x^6*(1+x)^4 + x^7*(1+x)^4 + x^8*(1+x)^4 + x^9*(1+x)^4 + x^10*(1+x)^5 + x^11*(1+x)^5 + x^12*(1+x)^5 + x^13*(1+x)^5 + x^14*(1+x)^5 + x^15*(1+x)^6 + ...
MAPLE
T:=proc(n, k) if k=0 then 2^n elif k=n then 2^(n+1)-1 else T(n-1, k)+T(n-1, k-1) fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form - Emeric Deutsch, Mar 26 2005
MATHEMATICA
t[n_, 0] := 2^n; t[n_, n_] := 2^(n+1)-1; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 15 2013 *)
PROG
(PARI) /* Print in flattened form: Sum_{n>=0} x^n*(1+x)^tr(n) */
{tr(n) = ceil( (sqrt(8*n+9)-1)/2 )}
{a(n) = polcoeff( sum(m=0, n, x^m * (1+x +x*O(x^n))^tr(m) ), n)}
for(n=0, 78, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 19 2016
CROSSREFS
Cf. A000079, A053220 (row sums), A265939 (central terms).
Sequence in context: A278181 A232566 A192649 * A201816 A155900 A274949
KEYWORD
nonn,tabl,easy
AUTHOR
David Williams, Mar 15 2005, Oct 05 2007
EXTENSIONS
More terms from Emeric Deutsch, Mar 26 2005
STATUS
approved