OFFSET
0,2
COMMENTS
First column right of center divided by 3 equals powers of 4.
Right of left edge, sums of rows are divisible by 3.
Apparently the number of terms per row plus the number of numbers in natural order skipped per row equals a power of 2. - David Williams, Jun 27 2009
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
G.f.: Sum_{n>=0} x^n * (1+x)^tr(n) = Sum_{n>=0} a(n)*x^n, where tr(n) = A002024(n+1) = floor(sqrt(2*n+1) + 1/2). - Paul D. Hanna, Feb 19 2016
G.f.: Sum_{n>=1} x^(n*(n-1)/2) * (1-x^n)/(1-x) * (1+x)^n = Sum_{n>=0} a(n)*x^n. - Paul D. Hanna, Feb 20 2016
EXAMPLE
This triangle begins:
1
2 3
4 5 7
8 9 12 15
16 17 21 27 31
32 33 38 48 58 63
64 65 71 86 106 121 127
128 129 136 157 192 227 248 255
256 257 265 293 349 419 475 503 511
G.f. of this sequence in flattened form:
A(x) = 1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + 7*x^5 + 8*x^6 + 9*x^7 + 12*x^8 + 15*x^9 + 16*x^10 + 17*x^11 + 21*x^12 + 27*x^13 + 31*x^14 + 32*x^15 + ...
such that
A(x) = (1+x) + x*(1+x)^2 + x^2*(1+x)^2 + x^3*(1+x)^3 + x^4*(1+x)^3 + x^5*(1+x)^3 + x^6*(1+x)^4 + x^7*(1+x)^4 + x^8*(1+x)^4 + x^9*(1+x)^4 + x^10*(1+x)^5 + x^11*(1+x)^5 + x^12*(1+x)^5 + x^13*(1+x)^5 + x^14*(1+x)^5 + x^15*(1+x)^6 + ...
MAPLE
T:=proc(n, k) if k=0 then 2^n elif k=n then 2^(n+1)-1 else T(n-1, k)+T(n-1, k-1) fi end: for n from 0 to 10 do seq(T(n, k), k=0..n) od; # yields sequence in triangular form - Emeric Deutsch, Mar 26 2005
MATHEMATICA
t[n_, 0] := 2^n; t[n_, n_] := 2^(n+1)-1; t[n_, k_] := t[n, k] = t[n-1, k] + t[n-1, k-1]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 15 2013 *)
PROG
(PARI) /* Print in flattened form: Sum_{n>=0} x^n*(1+x)^tr(n) */
{tr(n) = ceil( (sqrt(8*n+9)-1)/2 )}
{a(n) = polcoeff( sum(m=0, n, x^m * (1+x +x*O(x^n))^tr(m) ), n)}
for(n=0, 78, print1(a(n), ", ")) \\ Paul D. Hanna, Feb 19 2016
CROSSREFS
KEYWORD
AUTHOR
David Williams, Mar 15 2005, Oct 05 2007
EXTENSIONS
More terms from Emeric Deutsch, Mar 26 2005
STATUS
approved