This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102239 a(n) = Sum[5^i, {i, 0, n}] + 1 - Mod[Sum[5^i, {i, 0, n}], 2] 0
 1, 7, 31, 157, 781, 3907, 19531, 97657, 488281, 2441407, 12207031, 61035157, 305175781, 1525878907, 7629394531, 38146972657, 190734863281, 953674316407, 4768371582031, 23841857910157, 119209289550781, 596046447753907 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = term (1,1) in M^n, M = the 4x4 matrix [1, 1, 1, 2; 1, 1, 2, 1; 1, 2, 1, 1; 2, 1, 1, 1]. a(n)/a(n-1) tends to 5, a root to the charpoly x^4 - 4x^3 - 6x^2 + 4x + 5. [From Gary W. Adamson, Mar 12 2009] LINKS Robert Munafo, Sequences Related to Floretions FORMULA a(n) = 4*a(n-1) + 5*a(n-2) - 2 (conjecture) - Creighton Dement, Apr 13 2005 (1/4) [5^(n+1) - 2(-1)^2 + 1 ]. - Ralf Stephan, May 17 2007 G.f.: -(-1-2*x+5*x^2)/((x-1)*(5*x-1)*(1+x)). a(n)=5*a(n-1)+a(n-2)-5*a(n-3). [From R. J. Mathar, Mar 19 2009] MATHEMATICA a = Table[Sum[5^i, {i, 0, n}] + 1 - Mod[Sum[5^i, {i, 0, n}], 2], {n, 0, 50}] PROG Floretion Algebra Multiplication Program, FAMP Code: 1tesseq[ + 'ij' + 'ik' + 'ji' + 'jk' + 'ki' + 'kj' + e] CROSSREFS Cf. A015531. Sequence in context: A199216 A057620 A055625 * A188233 A264608 A172634 Adjacent sequences:  A102236 A102237 A102238 * A102240 A102241 A102242 KEYWORD nonn AUTHOR Roger L. Bagula, Mar 15 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.