login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101443
Continued fraction expansion of (I_0(1/2)/I_1(1/2)-1)/2 = 1.56185896... (where I_n is the modified Bessel function of the first kind).
1
1, 1, 1, 3, 1, 1, 5, 1, 1, 7, 1, 1, 9, 1, 1, 11, 1, 1, 13, 1, 1, 15, 1, 1, 17, 1, 1, 19, 1, 1, 21, 1, 1, 23, 1, 1, 25, 1, 1, 27, 1, 1, 29, 1, 1, 31, 1, 1, 33, 1, 1, 35, 1, 1, 37, 1, 1, 39, 1, 1, 41, 1, 1, 43, 1, 1, 45, 1, 1, 47, 1, 1, 49, 1, 1, 51, 1, 1, 53, 1, 1, 55, 1, 1, 57, 1, 1, 59, 1, 1, 61, 1
OFFSET
0,4
FORMULA
G.f.: 1 + x*U(0) where U(k)= 1 + x/(1 - x*(2*k+2)/(1+x*(2*k+2) - 1/((2*k+2) + 1 - (2*k+2)*x/(x + 1/U(k+1))))) ; (continued fraction, 5-step). - Sergei N. Gladkovskii, Oct 07 2012
MATHEMATICA
LinearRecurrence[{0, 0, 2, 0, 0, -1}, {1, 1, 1, 3, 1, 1}, 92] (* Georg Fischer, Feb 25 2022 *)
PROG
(PARI) contfrac((besseli(0, 1/2)/besseli(1, 1/2)-1)/2)
(PARI) a(n) = 2/3*n*!(n%3)+1
CROSSREFS
Sequence in context: A087501 A294951 A379288 * A228037 A184726 A046230
KEYWORD
cofr,easy,nonn
AUTHOR
Thomas Baruchel, Jan 18 2005
STATUS
approved