login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101270 Triangle read by rows: T(n,k) is the coefficient of z^k in the numerator of the polynomial part of z^n*exp(-n*s), where s=hypergeom([1,1,3/2],[2,5/2],1/z^2)/(6z^2); related to Chebyshev's quadrature. 0
0, 1, -1, 0, 3, 0, -1, 0, 2, 1, 0, -30, 0, 45, 0, 7, 0, -60, 0, 72, -1, 0, 21, 0, -105, 0, 105, 0, -149, 0, 2142, 0, -7560, 0, 6480, -43, 0, -2220, 0, 20790, 0, -56700, 0, 42525, 0, 53, 0, -2280, 0, 15120, 0, -33600, 0, 22400, -43, 0, 561, 0, -9900, 0, 49896, 0, -93555, 0, 56133, 0, -33889, 0, 817674, 0, -9163440, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,5

REFERENCES

H. E. Salzer, Tables for facilitating the use of Chebyshev's quadrature formula, Journal of Mathematics and Physics, 26 (1947),191-194.

LINKS

Table of n, a(n) for n=1..72.

Eric Weisstein's World of Mathematics, Chebyshev Quadrature

EXAMPLE

T(4,0)=1,T(4,1)=0,T(4,2)=-30,T(4,3)=0,T(4,4)=45 because

z^4*exp(-4s)=z^4-2z^2/3+1/45-32/(2835z^2)+O(1/z^4) = (45z^4-30z^2+1)/45 - 32/(2835z^2)+O(1/z^4)

Triangle begins:

0,1;

-1,0,3;

0,-1,0,2;

1,0,-30,0,45;

0,7,0,-60,0,72;

CROSSREFS

T(n, n)=A002680(n).

Sequence in context: A232630 A216600 A093684 * A155522 A007524 A204689

Adjacent sequences:  A101267 A101268 A101269 * A101271 A101272 A101273

KEYWORD

sign,tabf

AUTHOR

Emeric Deutsch, Jan 24 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 09:22 EDT 2019. Contains 328026 sequences. (Running on oeis4.)