This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101270 Triangle read by rows: T(n,k) is the coefficient of z^k in the numerator of the polynomial part of z^n*exp(-n*s), where s=hypergeom([1,1,3/2],[2,5/2],1/z^2)/(6z^2); related to Chebyshev's quadrature. 0
 0, 1, -1, 0, 3, 0, -1, 0, 2, 1, 0, -30, 0, 45, 0, 7, 0, -60, 0, 72, -1, 0, 21, 0, -105, 0, 105, 0, -149, 0, 2142, 0, -7560, 0, 6480, -43, 0, -2220, 0, 20790, 0, -56700, 0, 42525, 0, 53, 0, -2280, 0, 15120, 0, -33600, 0, 22400, -43, 0, 561, 0, -9900, 0, 49896, 0, -93555, 0, 56133, 0, -33889, 0, 817674, 0, -9163440, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 REFERENCES H. E. Salzer, Tables for facilitating the use of Chebyshev's quadrature formula, Journal of Mathematics and Physics, 26 (1947),191-194. LINKS Eric Weisstein's World of Mathematics, Chebyshev Quadrature EXAMPLE T(4,0)=1,T(4,1)=0,T(4,2)=-30,T(4,3)=0,T(4,4)=45 because z^4*exp(-4s)=z^4-2z^2/3+1/45-32/(2835z^2)+O(1/z^4) = (45z^4-30z^2+1)/45 - 32/(2835z^2)+O(1/z^4) Triangle begins: 0,1; -1,0,3; 0,-1,0,2; 1,0,-30,0,45; 0,7,0,-60,0,72; CROSSREFS T(n, n)=A002680(n). Sequence in context: A232630 A216600 A093684 * A155522 A007524 A204689 Adjacent sequences:  A101267 A101268 A101269 * A101271 A101272 A101273 KEYWORD sign,tabf AUTHOR Emeric Deutsch, Jan 24 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 09:22 EDT 2019. Contains 328026 sequences. (Running on oeis4.)