login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A093684 In binary representation: number of occurrences of n in n!. 4
1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 3, 0, 1, 0, 2, 0, 1, 1, 1, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 0, 2, 1, 3, 1, 1, 0, 1, 2, 2, 3, 3, 1, 1, 1, 1, 2, 2, 4, 3, 3, 3, 2, 2, 0, 3, 1, 5, 5, 6, 4, 1, 5, 2, 3, 2, 2, 4, 1, 1, 1, 4, 1, 1, 1, 2, 3, 3, 4, 5, 0, 3, 2, 1, 4, 3, 4, 5, 3, 2, 1, 2, 3, 3, 3, 3, 6, 2, 3, 4, 4, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,12

COMMENTS

a(A093685(n)) = 0, a(A093686(n)) > 0.

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

Index entries for sequences related to factorial numbers.

Index entries for sequences related to binary expansion of n

EXAMPLE

n=12->'1100', 12!=479001600->'11100100011001111110000000000' with three occurrences of '1100': '.1100....1100....1100........', therefore a(12)=3.

MAPLE

f:= proc(n) local L, Lf;

  L:= convert(convert(n, binary), string);

  Lf:= convert(convert(n!, binary), string);

  nops([StringTools:-SearchAll(L, Lf)])

end proc:

map(f, [$1..100]); # Robert Israel, May 20 2016

MATHEMATICA

non[n_]:=Module[{b=IntegerDigits[n, 2], f=IntegerDigits[n!, 2]}, Length[ Select[ Partition[ f, Length[b], 1], #==b&]]]; Array[non, 110] (* Harvey P. Dale, Jun 04 2014 *)

CROSSREFS

Cf. A036603, A007088, A000142, A092601.

Sequence in context: A325268 A232630 A216600 * A101270 A155522 A007524

Adjacent sequences:  A093681 A093682 A093683 * A093685 A093686 A093687

KEYWORD

nonn

AUTHOR

Reinhard Zumkeller, Apr 10 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 10:32 EDT 2019. Contains 328257 sequences. (Running on oeis4.)