login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101099
Third partial sums of fifth powers (A000584).
11
1, 35, 345, 1955, 7990, 26226, 73470, 182490, 412335, 863005, 1695551, 3158805, 5624060, 9629140, 15933420, 25585476, 40005165, 61082055, 91292245, 133835735, 192796626, 273328550, 381867850, 526377150, 716622075, 964484001, 1284311835
OFFSET
1,2
LINKS
FORMULA
a(n) = n*(1 + n)*(2 + n)*(3 + n)*(-1 + n*(2 + n))*(2 + n*(4 + n))/336.
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4)/(1-x)^9. - Colin Barker, Apr 16 2012
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Harvey P. Dale, Feb 20 2015
E.g.f.: x*(336 + 5544*x + 13608*x^2 + 10934*x^3 + 3696*x^4 + 574*x^5 + 40*x^6 + x^7)*exp(x)/336. - G. C. Greubel, Dec 01 2018
Sum_{n>=1} 1/a(n) = 224/3 - 60*sqrt(2)*Pi*cot(sqrt(2)*Pi). - Amiram Eldar, Jan 27 2022
MATHEMATICA
Nest[Accumulate[#]&, Range[30]^5, 3] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 35, 345, 1955, 7990, 26226, 73470, 182490, 412335}, 30] (* Harvey P. Dale, Feb 20 2015 *)
PROG
(PARI) vector(30, n, n*(1+n)*(2+n)*(3+n)*(-1+n*(2+n))*(2+n*(4+n))/336) \\ G. C. Greubel, Dec 01 2018
(Magma) [n*(1+n)*(2+n)*(3+n)*(-1+n*(2+n))*(2+n*(4+n))/336: n in [1..30]]; // G. C. Greubel, Dec 01 2018
(Sage) [n*(1+n)*(2+n)*(3+n)*(-1+n*(2+n))*(2+n*(4+n))/336 for n in (1..30)] # G. C. Greubel, Dec 01 2018
CROSSREFS
Cf. A000584.
Sequence in context: A372151 A027792 A163935 * A027803 A267749 A073567
KEYWORD
nonn,easy
AUTHOR
Cecilia Rossiter (cecilia(AT)noticingnumbers.net), Dec 15 2004
EXTENSIONS
Edited by Ralf Stephan, Dec 16 2004
STATUS
approved