login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027792
a(n) = 7*(n+1)*binomial(n+3,7).
0
35, 336, 1764, 6720, 20790, 55440, 132132, 288288, 585585, 1121120, 2042040, 3564288, 5996172, 9767520, 15465240, 23876160, 36038079, 53300016, 77392700, 110510400, 155405250, 215495280, 294987420, 399016800, 533803725, 706829760, 927034416, 1205033984, 1553364120
OFFSET
4,1
COMMENTS
Number of 11-subsequences of [ 1, n ] with just 3 contiguous pairs.
FORMULA
G.f.: 7*(5+3x)*x^4/(1-x)^9.
a(n) = C(n+1, 5)*C(n+3, 3). - Zerinvary Lajos, May 10 2005; corrected by R. J. Mathar, Feb 10 2016
From Amiram Eldar, Feb 04 2022: (Start)
Sum_{n>=4} 1/a(n) = 5*Pi^2/2 - 2957/120.
Sum_{n>=4} (-1)^n/a(n) = 5*Pi^2/4 + 32*log(2) - 4139/120. (End)
MATHEMATICA
Table[7(n+1)Binomial[n+3, 7], {n, 4, 30}] (* or *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {35, 336, 1764, 6720, 20790, 55440, 132132, 288288, 585585}, 30] (* Harvey P. Dale, Jan 04 2015 *)
CROSSREFS
Sequence in context: A371841 A227058 A372151 * A163935 A101099 A027803
KEYWORD
nonn,easy
AUTHOR
Thi Ngoc Dinh (via R. K. Guy)
STATUS
approved