login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A100212
Expansion of 4*x^4*(2 + x)/(1 - 2*x + 2*x^2 - 4*x^4 + 8*x^5 - 8*x^6).
2
0, 0, 0, 0, 8, 20, 24, 8, 0, 0, 0, 0, 128, 320, 384, 128, 0, 0, 0, 0, 2048, 5120, 6144, 2048, 0, 0, 0, 0, 32768, 81920, 98304, 32768, 0, 0, 0, 0, 524288, 1310720, 1572864, 524288, 0, 0, 0, 0, 8388608, 20971520, 25165824, 8388608, 0, 0, 0, 0, 134217728, 335544320
OFFSET
0,5
COMMENTS
a(n) = 0 iff n == {0, 1, 2 or 3} (mod 8). - Robert G. Wilson v, Nov 12 2004
FORMULA
a(8n+4) = a(8n+7) = 2^(4n+3), a(8n+5) = (5/2)*2^(4n+3), a(8n+6) = 3*2^(4n+3), a(8n+8) = 0, a(8n+9) = 0, a(8n+10) = 0, a(8n+11) = 0.
(a(n)) = negseq(.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e)
a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=8, a(5)=20, a(n) = 2*a(n-1) - 2*a(n-2) + 4*a(n-4) - 8*a(n-5) + 8*a(n-6). - Harvey P. Dale, Oct 10 2012
MATHEMATICA
CoefficientList[ Series[4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6), {x, 0, 55}], x] (* Robert G. Wilson v, Nov 12 2004 *)
LinearRecurrence[{2, -2, 0, 4, -8, 8}, {0, 0, 0, 0, 8, 20}, 60] (* Harvey P. Dale, Oct 10 2012 *)
PROG
(PARI) Vec(4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
(Magma) R<x>:=PowerSeriesRing(Integers(), 60); [0, 0, 0, 0] cat Coefficients(R!( 4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6) )); // G. C. Greubel, Apr 01 2024
(SageMath)
def A100212_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( 4*x^4*(2+x)/(1-2*x+2*x^2-4*x^4+8*x^5-8*x^6) ).list()
A100212_list(60) # G. C. Greubel, Apr 01 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Nov 08 2004
EXTENSIONS
More terms from Robert G. Wilson v, Nov 12 2004
STATUS
approved