This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100212 Expansion of (x^5 + 2*x^4)/(1/2*x^2 - 2*x^6 + 2*x^5 - x^4 - 1/2*x + 1/4). 1
 0, 0, 0, 0, 8, 20, 24, 8, 0, 0, 0, 0, 128, 320, 384, 128, 0, 0, 0, 0, 2048, 5120, 6144, 2048, 0, 0, 0, 0, 32768, 81920, 98304, 32768, 0, 0, 0, 0, 524288, 1310720, 1572864, 524288, 0, 0, 0, 0, 8388608, 20971520, 25165824, 8388608, 0, 0, 0, 0, 134217728, 335544320 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) = 0 iff n == {0, 1, 2 or 3} (mod 8). - Robert G. Wilson v, Nov 12 2004 LINKS Index entries for linear recurrences with constant coefficients, signature (2, -2, 0, 4, -8, 8). FORMULA a(8n+4) = a(8n+7) = 2^(4n+3), a(8n+5) = (5/2)*2^(4n+3), a(8n+6) = 3*2^(4n+3), a(8n+8) = 0, a(8n+9) = 0, a(8n+10) = 0, a(8n+11) = 0. (a(n)) = negseq(.5 'j + .5 'k + .5 j' + .5 k' + 1 'ii' + 1 e) a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=8, a(5)=20, a(n) = 2*a(n-1) - 2*a(n-2) + 4*a(n-4) - 8*a(n-5) + 8*a(n-6). - Harvey P. Dale, Oct 10 2012 MATHEMATICA CoefficientList[ Series[(x^5 + 2*x^4)/(x^2/2 - 2*x^6 + 2*x^5 - x^4 - x/2 + 1/4), {x, 0, 55}], x] (* Robert G. Wilson v, Nov 12 2004 *) LinearRecurrence[{2, -2, 0, 4, -8, 8}, {0, 0, 0, 0, 8, 20}, 60] (* Harvey P. Dale, Oct 10 2012 *) PROG (PARI) Vec((4*x^5+8*x^4)/(-8*x^6+8*x^5-4*x^4+2*x^2-2*x+1)+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012 CROSSREFS Cf. A100213, A038503, A009116. Sequence in context: A214457 A205226 A205318 * A083094 A164916 A207190 Adjacent sequences:  A100209 A100210 A100211 * A100213 A100214 A100215 KEYWORD nonn,easy AUTHOR Creighton Dement, Nov 08 2004 EXTENSIONS More terms from Robert G. Wilson v, Nov 12 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 21 05:01 EST 2017. Contains 294988 sequences.