OFFSET
0,4
COMMENTS
A Chebyshev transform of A001045(n+1): if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))*A(x/(1+x^2)).
Also decimal expansion of 1111/9990. - Elmo R. Oliveira, Feb 18 2024
Also partial quotients of the continued fraction expansion of sqrt(5/2). - Hugo Pfoertner, Jan 10 2025
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
Index entries for linear recurrences with constant coefficients, signature (0,0,1).
FORMULA
G.f.: (1+x)(1+x^2)/(1-x^3).
a(n) = n*Sum_{k=0..floor(n/2)} binomial(n-k, k)(-1)^k*A001045(n-2k+1)/(n-k).
Multiplicative with a(3^e) = 2, a(p^e) = 1 otherwise. - David W. Wilson, Jun 11 2005
Dirichlet g.f.: zeta(s)*(1+1/3^s). Dirichlet convolution of A154272 and A000012. - R. J. Mathar, Feb 07 2011
a(n) = 2 if n == 0 (mod 3) and n > 0, and a(n) = 1 otherwise. - Amiram Eldar, Nov 01 2022
a(n) = gcd(Fibonacci(n), Lucas(n)) = gcd(A000045(n), A000032(n)), for n >= 1. - Amiram Eldar, Jul 10 2023
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + x^4 + x^5 + 2*x^6 + x^7 + x^8 + 2*x^9 + ... - Michael Somos, Feb 20 2024
MATHEMATICA
PadRight[{1}, 120, {2, 1, 1}] (* or *) LinearRecurrence[{0, 0, 1}, {1, 1, 1, 2}, 120] (* Harvey P. Dale, Jul 08 2015 *)
a[ n_] := If[n<1, Boole[n==0], {2, 1, 1}[[1+Mod[n, 3]]]]; (* Michael Somos, Feb 20 2024 *)
PROG
(PARI) my(x='x+O('x^50)); Vec((1+x)(1+x^2)/(1-x^3)) \\ G. C. Greubel, May 03 2017
(PARI) {a(n) = if(n<1, n==0, [2, 1, 1][n%3+1])}; /* Michael Somos, Feb 20 2024 */
(PARI) contfrac(sqrt(5/2), , 80) \\ Hugo Pfoertner, Jan 10 2025
CROSSREFS
KEYWORD
easy,nonn,mult,changed
AUTHOR
Paul Barry, Nov 02 2004
STATUS
approved