OFFSET
1,2
COMMENTS
Allouche gives an equality with this constant and an infinite sum involving the sum of the binary digits of numbers. - Charles R Greathouse IV, Sep 08 2012
LINKS
Jean-Paul Allouche, Series and infinite products related to binary expansions of integers.
Jean-Paul Allouche and Jeffrey Shallit, Sums of digits and the Hurwitz zeta function, in: K. Nagasaka and E. Fouvry (eds.), Analytic Number Theory, Lecture Notes in Mathematics, Vol. 1434, Springer, Berlin, Heidelberg, 1990, pp. 19-30.
Eric Weisstein's World of Mathematics, Digit Sum.
FORMULA
Equals Sum_{k>=2} A000120(k)^2 * (8*k^3 + 4*k^2 + k - 1)/(4*k*(k^2-1)*(4*k^2-1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
EXAMPLE
1.4014805138932786427505654547915099...
MATHEMATICA
RealDigits[17/24+Log[2], 10, 120][[1]] (* Harvey P. Dale, Jan 21 2013 *)
PROG
(PARI) log(2)+17/24 \\ Charles R Greathouse IV, May 15 2019
CROSSREFS
KEYWORD
AUTHOR
Eric W. Weisstein, Oct 31 2004
STATUS
approved