This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100048 A Chebyshev transform of the Pell numbers. 6
 0, 1, 2, 2, 4, 9, 16, 29, 56, 106, 198, 373, 704, 1325, 2494, 4698, 8848, 16661, 31376, 59089, 111276, 209554, 394634, 743177, 1399552, 2635641, 4963450, 9347186, 17602652, 33149377, 62427024, 117562789, 221394656, 416931194, 785166286 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS A Chebyshev transform of the Pell numbers A000129: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)). This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. Case P1 = 2, P2 = -1, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. See the remarks in A100047 for the general connection between Chebyshev polynomials and 4th-order linear divisibility sequences. - Peter Bala, Mar 24 2014 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277. H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-1). FORMULA G.f.: x(1-x^2)/(1-2x+x^2-2x^3+x^4). a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - a(n-4). a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k,k)*A000129(n-2*k)/(n-k). From Peter Bala, Mar 24 2014: (Start) a(n) = |u(n)|^2, where {u(n)} is the Lucas-type sequence defined by the recurrence u(0) = 0, u(1) = 1 and u(n) = P*u(n-1) - u(n-2) for n >= 2, where P = 1/2*(sqrt(7) + i). a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), where alpha = (1 + sqrt(2))/2 and beta = (1 - sqrt(2))/2 and T(n,x) denotes the Chebyshev polynomial of the first kind. a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 1/4; 1, 1]. The o.g.f. is the Hadamard product of the rational functions x/(1 - 1/2*(sqrt(7) + i)*x + x^2) and x/(1 - 1/2*(sqrt(7) - i)*x + x^2). (End) MATHEMATICA LinearRecurrence[{2, -1, 2, -1}, {0, 1, 2, 2}, 40] (* Harvey P. Dale, Jun 07 2015 *) PROG (PARI) x='x+O('x^50); Vec(x(1-x^2)/(1-2x+x^2-2x^3+x^4)) \\ G. C. Greubel, Aug 08 2017 CROSSREFS Cf. A099443, A011655, A100047. Sequence in context: A054231 A054230 A054232 * A052935 A246789 A166022 Adjacent sequences:  A100045 A100046 A100047 * A100049 A100050 A100051 KEYWORD easy,nonn AUTHOR Paul Barry, Oct 31 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 15:32 EDT 2019. Contains 323444 sequences. (Running on oeis4.)