login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099450
Expansion of 1/(1 - 5x + 7x^2).
4
1, 5, 18, 55, 149, 360, 757, 1265, 1026, -3725, -25807, -102960, -334151, -950035, -2411118, -5405345, -10148899, -12907080, 6506893, 122884025, 568871874, 1984171195, 5938752857, 15804565920, 37451559601, 76625836565, 120968265618, 68460472135, -504475498651
OFFSET
0,2
COMMENTS
Associated to the knot 7_7 by the modified Chebyshev transform A(x)-> (1/(1+x^2)^2)A(x/(1+x^2)). See A099451 and A099452.
FORMULA
a(n) = sum{k=0..floor(n/2), binomial(n-k, k)(-7)^k*5^(n-2k)}.
a(n) = 5*a(n-1) - 7*a(n-2), a(0)=1, a(1)=5. - Philippe Deléham, Nov 15 2008
MATHEMATICA
CoefficientList[Series[1/(1-5x+7x^2), {x, 0, 40}], x] (* or *) LinearRecurrence[ {5, -7}, {1, 5}, 40] (* Harvey P. Dale, Oct 21 2016 *)
PROG
(Sage) [lucas_number1(n, 5, 7) for n in range(1, 30)] # Zerinvary Lajos, Apr 22 2009
CROSSREFS
Sequence in context: A081492 A263318 A011845 * A360191 A344847 A145129
KEYWORD
easy,sign
AUTHOR
Paul Barry, Oct 16 2004
STATUS
approved