This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099447 An Alexander sequence for the knot 6_3. 1
 1, 3, 4, 0, -13, -30, -29, 24, 140, 243, 130, -429, -1348, -1752, 67, 5346, 11795, 10608, -11180, -56541, -93694, -42525, 182452, 535440, 660179, -106782, -2197373, -4613112, -3832996, 5081235, 22766722, 36008115 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The denominator is a parameterisation of the Alexander polynomial for the knot 6_3. 1/(1-3*x+5*x^2-3*x^3+x^4) is the image of the g.f. of A057083 under the modified Chebyshev transform A(x)->(1/(1+x^2)^2)A(x/(1+x^2)). LINKS Dror Bar-Natan, The Rolfsen Knot Table Index to sequences with linear recurrences with constant coefficients, signature (3,-5,3,-1). FORMULA G.f.: (1-x)*(1+x)*(1+x^2)/(1-3x+5x^2-3x^3+x^4); - corrected Nov 24 2012 a(n)=A099446(n)-A099446(n-2). CROSSREFS Sequence in context: A213280 A056862 A113035 * A078067 A192442 A009126 Adjacent sequences:  A099444 A099445 A099446 * A099448 A099449 A099450 KEYWORD easy,sign AUTHOR Paul Barry, Oct 16 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .