login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099178
Numbers which are the sum of two positive cubes and divisible by 17.
7
1241, 1343, 1547, 1853, 2261, 2771, 3383, 4097, 9826, 9928, 10234, 10744, 11458, 12376, 13498, 14824, 16354, 18088, 20026, 22168, 24514, 27064, 29818, 32776, 33201, 33507, 34119, 35037, 35938, 36261, 37791, 39627, 41769, 44217, 46971
OFFSET
1,1
LINKS
EXAMPLE
Sums not divisible by 17 are indicated in asterisks:
....|...1....8...27...64...125...216...343...512...729..1000..1331
------------------------------------------------------------------
1...|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
8...|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
27..|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
64..|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
125.|...*....*....*....*.....*.....*.....*.....*.....*.....*.....*
216.|...*....*....*....*.....*.....*.....*.....*.....*.....*..1547
343.|...*....*....*....*.....*.....*.....*.....*.....*..1343.....*
512.|...*....*....*....*.....*.....*.....*.....*...1241....*.....*
729.|...*....*....*....*.....*.....*.....*..1241.....*.....*.....*
1000|...*....*....*....*.....*.....*..1343.....*.....*.....*.....*
1331|...*....*....*....*.....*..1547.....*.....*.....*.....*.....*
MATHEMATICA
upto[n_] := Block[{t}, Union@ Reap[ Do[If[Mod[t = x^3 + y^3, 17] == 0, Sow@t], {x, n^(1/3)}, {y, Min[x, (n - x^3)^(1/3)]}]][[2, 1]]]; upto[47000] (* Giovanni Resta, Jun 12 2020 *)
CROSSREFS
Cf. A098365.
Sequence in context: A237552 A010081 A028514 * A209711 A228964 A047628
KEYWORD
nonn,easy
AUTHOR
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Nov 15 2004
STATUS
approved