login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A237552 Number of (n+1)X(3+1) 0..2 arrays with the maximum minus the upper median of every 2X2 subblock differing from its horizontal and vertical neighbors by exactly one 1
1240, 8764, 60002, 343356, 2403292, 16373120, 122961380, 785426128, 5684118308, 38591882672, 288701778796, 1875287628052, 13686600650894, 92040152306336, 684906875721050, 4484128351917688, 32873214587739986, 219731229818042284 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Column 3 of A237557

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 2209*a(n-4) +20488*a(n-6) -484417*a(n-8) -5045450*a(n-10) +32187035*a(n-12) +379511934*a(n-14) -482584122*a(n-16) -8372244682*a(n-18) +3088423171*a(n-20) +62221443020*a(n-22) -15504608944*a(n-24) -153636549438*a(n-26) +65472211942*a(n-28) +88325162236*a(n-30) -29619139113*a(n-32) -11600316200*a(n-34) +3764093856*a(n-36) +396449184*a(n-38) -150944128*a(n-40) -7616128*a(n-42) -95232*a(n-44) for n>49

EXAMPLE

Some solutions for n=3

..1..1..0..2....0..2..1..1....0..0..1..0....0..1..2..1....1..1..1..2

..1..1..2..0....0..0..1..0....2..1..0..2....0..2..0..1....1..0..2..1

..1..2..1..1....2..1..0..0....2..0..2..0....2..1..1..1....0..2..1..1

..2..0..0..1....2..0..2..0....1..0..0..1....0..1..0..2....2..1..1..0

CROSSREFS

Sequence in context: A161868 A145047 A236974 * A010081 A028514 A099178

Adjacent sequences:  A237549 A237550 A237551 * A237553 A237554 A237555

KEYWORD

nonn

AUTHOR

R. H. Hardin, Feb 09 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 25 06:09 EDT 2019. Contains 324346 sequences. (Running on oeis4.)