OFFSET
0,3
COMMENTS
Diagonal sums of A099093.
Counts walks (closed) on the graph G(1-vertex; 2-loop, 2-loop, 2-loop, 3-loop, 3-loop, 3-loop). - David Neil McGrath, Jan 16 2015
Number of compositions of n into parts 2 and 3, each of three sorts. - Joerg Arndt, Feb 14 2015
LINKS
FORMULA
G.f.: 1/(1 - 3*x^2 - 3*x^3).
a(n) = Sum_{k=0..floor(n/2)} binomial(k, n-2k)*3^k.
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j-1)] where A(n) = (0,3,3,0,0,...) and S(n) = (0,1,0,0,...). (* is convolution operation.) Define S^*0 = I. Then T(n,j) counts n-walks containing (j) loops, on the single vertex graph above, and a(n) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 16 2015
MATHEMATICA
CoefficientList[Series[1 / (1 - 3 x^2 - 3 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 16 2015 *)
LinearRecurrence[{0, 3, 3}, {1, 0, 3}, 40] (* Harvey P. Dale, Aug 15 2017 *)
PROG
(PARI) Vec(1/(1-3*x^2-3*x^3) + O(x^50)) \\ Michel Marcus, Jan 17 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 25 2004
EXTENSIONS
Corrected by Philippe Deléham, Dec 18 2008
STATUS
approved