

A099094


a(n) = 3a(n2) + 3a(n3), a(0)=1, a(1)=0, a(2)=3.


2



1, 0, 3, 3, 9, 18, 36, 81, 162, 351, 729, 1539, 3240, 6804, 14337, 30132, 63423, 133407, 280665, 590490, 1242216, 2613465, 5498118, 11567043, 24334749, 51195483, 107705376, 226590696, 476702577, 1002888216, 2109879819, 4438772379
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Diagonal sums of A099093.
Counts walks (closed) on the graph G(1vertex; 2loop, 2loop, 2loop, 3loop, 3loop, 3loop).  David Neil McGrath, Jan 16 2015
Number of compositions of n into parts 2 and 3, each of three sorts.  Joerg Arndt, Feb 14 2015


LINKS

Table of n, a(n) for n=0..31.
Index entries for linear recurrences with constant coefficients, signature (0,3,3)


FORMULA

G.f.: 1/(13*x^23*x^3).
a(n) = sum_{k=0..floor(n/2)} binomial(k, n2k)*3^k.
Construct the power matrix T(n,j) = [A(n)^*j]*[S(n)^*(j1)] where A(n) = (0,3,3,0,0...) and S(n) = (0,1,0,0...). (* is convolution operation). Define S^*0 = I. Then T(n,j) counts nwalks containing (j) loops, on the single vertex graph above, and a(n) = sum_{j=1..n} T(n,j).  David Neil McGrath, Jan 16 2015


MATHEMATICA

CoefficientList[Series[1 / (1  3 x^2  3 x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 16 2015 *)


PROG

(PARI) Vec(1/(13*x^23*x^3) + O(x^50)) \\ Michel Marcus, Jan 17 2015


CROSSREFS

Sequence in context: A089892 A038221 A099465 * A222169 A222444 A206492
Adjacent sequences: A099091 A099092 A099093 * A099095 A099096 A099097


KEYWORD

easy,nonn


AUTHOR

Paul Barry, Sep 25 2004


EXTENSIONS

Corrected by Philippe Deléham, Dec 18 2008


STATUS

approved



